Logo
Insights LogoInsights
Relevance-Based Importance
By Megan CzasonisMark KritzmanDavid Turkington
Jul 23, 2025

By Megan Czasonis, Mark Kritzman, and David Turkington

 

As the race to design sophisticated data analytics continues, we show why relevance-based prediction offers an ideal way to measure the importance of an input variable to a prediction.

 

T-statistics act as a hallmark for rigor by pinpointing the effect of a single variable and distinguishing signal from noise. However, they have significant limitations: (1) t-stats do not capture ‘shared’ information, (2) t-stats are not prediction-specific, and (3) t-stats only consider linear relationships. In a recent paper, we introduce an alternative method, called Relevance-Based Importance (RBI), which measures the importance of every variable to the reliability of every individual prediction. RBI recognizes that it is almost never the case that a variable is always important, or that it is never important. Rather, it's more likely that variables are sometimes important, depending on the circumstance. We show that RBI brings the virtues of t-statistics but also adapts to each unique situation, making it robust to complexities where t-stats fall short.

 

READ THE 1-PAGE SUMMARY

Insights logo
Learn more about Insights

Please contact us to learn more, subscribe or schedule a demo.

State Street Logo
  • © State Street Corporation
  • Privacy Notice
  • Legal Disclosure
  • Product-Specific Disclosure
1.Peter L. Bernstein Award for Best Article in an Institutional Investor Journal in 2013; Doriot Award for Best Private Equity Research Paper in 2022; Bernstein-Fabozzi/Jacobs-Levy Award for Outstanding Article in the Journal of Portfolio Management in 2006, 2009, 2011, 2013 (2), 2014, 2015, 2016, 2021; Roger F. Murray First Prize for Research Presented at the Q Group Conference in 2012 and 2021; Graham & Dodd Scroll Award for article in the Financial Analysts Journal in 2002 and 2010.