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An Intuitive Guide to Relevance-
Based Prediction
Megan Czasonis, Mark Kritzman, and David Turkington

KEY FINDINGS

n	 Relevance measures the importance of an observation to a prediction. It is composed 
of similarity and informativeness, both of which are measured as Mahalanobis distances.

n	 Fit measures the reliability of a specific prediction and aggregates to R-squared across 
all prediction tasks.

n	 Codependence is the notion that the selection of predictive variables depends on the 
chosen observations and the choice of observations depends on the selected variables.

ABSTRACT

Relevance-based prediction is a new approach to data-driven forecasting that serves as 
a favorable alternative to both linear regression analysis and machine learning. It follows 
from two seminal scientific innovations: Prasanta Mahalanobis’ distance measure and 
Claude Shannon’s information theory. Relevance-based prediction rests on three key tenets:  
1) relevance, which measures the importance of an observation to a prediction;  
2) fit, which measures the reliability of each individual prediction task; and 3) codepen-
dence, which holds that the choice of observations and predictive variables should be 
determined jointly for each individual prediction task.

Relevance-based prediction is a new, theoretically justified approach for forming 
predictions from data. It follows an intuitive, yet statistically rigorous, process 
of relying on past experiences as a guide to future outcomes. In doing so, it 

addresses complexities that are beyond the capacity of linear regression in a way 
that is more transparent and adaptive than machine-learning algorithms.

By measuring the relevance of past experiences in a statistical way, we can form 
data-driven predictions that can be explained intuitively in terms of past events and 
their relevance to today. For investors, this transparency provides a distinct advan-
tage over machine-learning algorithms, which are notoriously opaque and often fail to 
provide intuition. Moreover, by viewing predictions from the lens of past experiences, 
we can focus on a subset of the most relevant observations, which allows us to 
address asymmetric and conditional relationships that are beyond the capacity of linear 
regression. Relevance also empowers us to judge the reliability of an individual predic-
tion and adapt our choice of observations and variables according to the prediction 
circumstances. This adaptability offers yet another advantage over existing methods.

Our purpose in this article is to offer a non-technical, intuitive guide to 
relevance-based prediction.1 We start by emphasizing the importance of past 

1 For additional details on relevance-based prediction including mathematical formulas, refer to 
Czasonis, Kritzman, and Turkington (2022a, 2022b, 2023). 
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experiences for forming predictions. Then, we describe three key tenets of 
relevance-based prediction: relevance, which measures the importance of an obser-
vation to a prediction; fit, which measures the reliability of an individual prediction; and 
codependence, which holds that the choice of observations depends on the selected 
variables and the selection of variables depends on the chosen observations. We 
then compare relevance-based prediction with linear regression and machine-learning 
algorithms from the perspective of three guiding principles: flexibility, adaptability, 
and non-arbitrariness. 

MOTIVATION

It is intuitive to predict by learning from past experiences. For example, suppose 
we want to predict how a recession will impact stock returns. It is natural to recall 
past recessions and consider how stocks performed in each of those experiences. 
Of course, we do not need to have lived through all these events. We can turn to his-
tory books or long datasets to learn what happened. If we want to predict what may 
happen to stocks during a future recession, we have past experiences to draw upon.

For example, the left side of Exhibit 1 shows one-year stock returns following the 
start of 17 US recessions since 1926. The average return is 3%, as indicated by the 
horizonal bar. It would not be unreasonable, albeit somewhat naive, to predict that 
this will be the stock return following a future recession. However, there is consider-
able dispersion in these historical outcomes, including some highly negative returns. 
Therefore, we should not be overly confident in this prediction. 

Now, suppose we want to predict the stock return in the year after the end of 
a recession. This time we gather all the returns following the end of the recession 
windows and we get a different distribution, as shown in the right side of Exhibit 1. 
Now the average stock return is highly positive: 20%. Moreover, many of these past 
returns lie near the average. As a result, we may have greater confidence in this pre-
diction than the first. We will return to this insight in our discussion of fit.

This process of relying on past experiences is intuitive and enables us to see 
how each observation contributes to a prediction. Relevance-based prediction fol-
lows a similar approach but refines the process of this simple illustration. It uses 
a rich set of data to determine relevant observations in a precise mathematical 
way. It recognizes that some past events are more important than others; thus, we 
should overweight some and underweight, or even ignore, others. It also enables us 
to measure the reliability of an individual prediction and adapt our approach based 
on the circumstances of the prediction task. The result is a prediction system that 
is more transparent, more adaptive to new circumstances, and less arbitrary than 
existing techniques. 

In fact, these are the three principles that guide relevance-based prediction. We 
propose that a prediction system should be the following:

	 1.	 transparent, which promotes intuition, facilitates interpretation, and inspires 
confidence;

	 2.	 adaptive, which means it responds to new circumstances; 
	 3.	 non-arbitrary, by which we mean it is theoretically justified and mathematically 

unified.

We will reference these principles as we describe relevance-based prediction in 
the following sections. Later, we will use them to compare relevance-based prediction 
with other data analysis methods, namely, linear regression and machine learning.
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R ELEVANCE

Let us start by defi ning relevance. Relevance is the importance of an observation 
to a prediction. It consists of two components: informativeness and similarity. Simply 
put, relevant observations are those that are different from average but are similar 
to today. Let us dig into these concepts further. 

Informativeness is based on the notion that we should pay attention to unusual 
observations because they contain more information than typical ones. The link 
between unusualness and information is based on information theory, which was 
developed by Claude Shannon—one of the greatest geniuses in modern history—in 
the mid-20th century.2 Information theory states that probability is inversely related to 
information. In other words, the more surprising an observation, the more information 
it contains. Interestingly, our emphasis on unusual observations challenges a maxim 
of the way classical statistics is often taught, which is that we should view unusual 
observations skeptically and seek to minimize their infl uence. However, the notion 
of overweighting unusual observations (assuming they are not errors, of course!) is 
theoretically grounded and intuitive. For example, suppose you are investigating the 
relationship between a particular factor and stock market performance. Would you 
feel more confi dent that you understand its impact on the market on a typical day 
when the factor barely moved or on a day when the factor moved dramatically and 
so did the market? Unusual observations contain more information.

The second component of relevance—similarity—is intuitive. It is based on the 
notion that we should pay attention to observations that resemble today. Investors 

2 For additional details, refer to Shannon (1948).

EXHIBIT 1
One-Year Stock Returns Following Past US Recessions

NOTE: Horizontal bar indicates average return.
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implicitly recognize this when they use rolling windows or overweight recent data points 
when running analyses. These common practices equate similarity with recency. 
However, they ignore the possibility that older periods may also bear semblance to 
the current environment. Our definition of similarity looks for common statistical pat-
terns between past observations and today, regardless of where they fall along the 
timeline. This provides a richer set of experiences from which to form our predictions.

Together, informativeness and similarity form relevance. But how do we quantify 
these components? We rely on a powerful statistic called the Mahalanobis distance to 
measure them in a precise mathematical way. Named after Prasanta Mahalanobis—
an esteemed statistician from the early 1900s—the Mahalanobis distance is a mea-
sure of multivariate distance between two data points.3 It was originally conceived 
by Mahalanobis as part of an archeological study of human skulls. Mahalanobis 
devised the statistic to measure the similarity of a given skull—described by a set 
of attributes such as its length, the size of the nose, and so on—to the average 
attributes of skulls from a particular group. In developing this measure, Mahalanobis 
had two critical insights. First, he recognized that it is important to account for the 
typical deviation of a given attribute. For example, a one-centimeter difference in the 
size of a nose is more unusual than a one-centimeter difference in skull length. And 
second, he understood that it is important to account for the typical relationship 
between attributes. For example, if longer skulls tend to have larger noses, it would 
be unusual to find a long skull with a small nose. In mathematical terms, Mahalanobis 
realized that it was important to account for the variances of the attributes as well 
as their correlations.

We apply this same statistic to measure the informativeness and similarity of 
observations. In our case, we describe each observation by a set of circumstances 
related to the outcome we wish to predict. For example, these could be economic 
circumstances, such as growth and inflation, or market conditions, such as valuations 
and volatility. In fact, we can consider any set of circumstances that we think are 
important. In the language of data analysis, these are the X variables. Then, for each 
historical observation, we measure its informativeness as the Mahalanobis distance 
between its circumstances and the average circumstances across all observations. 
The greater its distance from average, the more unusual—and thus informative—the 
observation. We measure its similarity as the negative of its Mahalanobis distance 
from today’s circumstances.4 We use the negative distance because distance is a 
measure of dissimilarity and thus its negative indicates similarity. Finally, for each 
observation, we add these two components—informativeness and similarity—to 
determine its relevance. Relevant observations are those that are dissimilar from 
average (informativeness) and similar to today (similarity).

Prediction

Once we determine the relevance of all the observations in our sample, predic-
tion follows naturally. We simply form our prediction as a relevance-weighted average 
of past outcomes for the unknown outcome we wish to predict. For example, these 
outcomes could be subsequent stock returns or GDP growth. In the language of data 
analysis, the past outcomes are the Y variable, though the X variables determine 
relevance. 

3 For additional details, refer to Mahalanobis (1927, 1936).
4 More precisely, we measure similarity as half the negative Mahalanobis distance from current 

circumstances. We include a factor of one-half because distances between two data points are twice 
as large as distances from the average.
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Similar to our simple illustration from earlier, this process is intuitive and enables 
us to see how each observation contributes to a prediction. Moreover, it has an 
important equivalence with linear regression. When we form our prediction as a 
relevance-weighted average of all historical outcomes, the resulting prediction is 
identical to that from a linear regression. This equivalence is important for two rea-
sons. First, it means that relevance-based prediction is not arbitrary. It inherits the 
theoretical justifications of linear regression by virtue of their equivalence. Second, 
it reveals an interesting feature of linear regression. Linear regression assumes that 
what happened during relevant periods in the past will recur, which is reasonable. 
However, it also assumes that what happened during non-relevant periods in the past 
will recur, but in the opposite direction.

This is the essence of linearity; it expects opposite outcomes from opposite 
circumstances. However, this reasoning is occasionally, and perhaps often, flawed. 
For example, imagine asking your doctor how she thinks you will respond to a certain 
medication, and she explains that all of her patients who are different than you—dif-
ferent age, different sex, and the like—had horrible responses, but (don’t worry!) yours 
should be the opposite. How confident would you be in her prediction? Or, returning 
to our recession example from earlier, it would be like studying stock returns from 
robust growth periods and predicting the opposite will occur during recessions. The 
reality is that the world is often complex and predicting the opposite of the least 
relevant experiences is not always a good idea. Intuitively, it makes more sense to 
ignore these observations, which relevance empowers us to do.

Partial Sample Regression

Forming predictions from a subset of relevant experiences is called partial sam-
ple regression. The idea is to censor the historical sample by removing non-relevant 
observations before forming our prediction as a weighted average of past outcomes. 
Each time we predict, we select a new subsample of observations that are relevant 
to the prevailing circumstances. This loosens the binds of linearity (at least across 
the full set of observations) and enables us to better predict outcomes that may rise 
from asymmetric or conditional relationships. In the presence of complexity, focusing 
on a subset of relevant observations often produces more reliable predictions. 

FIT

Let us explore what we mean by reliability. Reliability is the quality of an individual 
prediction that we can assess in advance based on historical patterns. Importantly, 
this perspective is only possible when we understand how each past observation 
contributes to a prediction. To quantify reliability, we use a measure called fit. 

Fit considers the strength of patterns in the data underlying a prediction. Recall 
that we form a prediction as a relevance-weighted average of past outcomes. Thus, 
each historical observation has a relevance weight and an outcome, the product of 
which is their contribution to the prediction. Fit quantifies the degree of alignment 
between these two components—relevance and outcomes—across the sample of 
observations underlying a prediction. The greater the alignment, the greater our 
confidence in the prediction.

To understand why, consider the following analogy. Suppose you ask six friends 
to predict the price of a bottle of Italian wine that you intend to purchase. Imagine 
that three of your friends know Italian wine well, and they all say this bottle will be 
expensive. Meanwhile, your other three friends who know little about wine think it 
will be cheap. The fact that your knowledgeable friends agree is comforting, and you 

It 
is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rti
cl

e,
 fo

rw
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r o
r t

o 
po

st
 e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r p

er
m

is
si

on
. 



6  |  An Intuitive Guide to Relevance-Based Prediction Quantitative Tools 2023

should be confident in their collective opinion. This is an example of good fit. Now, 
suppose you ask the same group of friends about an obscure French wine. The ones 
who know French wine disagree strongly: One thinks it is expensive and the other 
thinks it is cheap. This should make you uncertain about their prediction. This is an 
example of poor fit.

It is important to emphasize that fit is specific to an individual prediction. It 
acknowledges that it is harder to predict in some situations than others. In one 
extreme, we could have pure noise, with outcomes that are all over the place. In this 
case, prediction is a futile attempt, and fit alerts us to that. However, we could use 
the same approach and the same data in a different situation and find that outcomes 
and relevance align perfectly. 

Mathematically, we measure fit as the squared correlation between relevance 
weights and outcomes. Here, there is another important mathematical equivalence. 
The R-squared of a linear regression model is exactly equal to the weighted average 
fit across all of its individual predictions. This equivalence is important because it 
means that our definition of fit is not arbitrary. Moreover, it underscores the point that 
R-squared is a summary statistic—an average of some good predictions and some 
bad ones. Fit provides greater transparency than R-squared because we can see how 
it changes for each prediction task. Moreover, because fit is determined from patterns 
in the data, we can estimate it before we even form a prediction. This paves the way 
for greater flexibility, allowing us to adapt our approach for each prediction task. 

CODEPENDENCE

Each time we predict with relevance, we must make two key decisions: First, the 
extent to which we focus on a subset of relevant observations. And second, the set 
of variables we use to determine relevance. In fact, these two decisions are code-
pendent. We should not choose observations independently of our variables, and 
we should not select variables independently of our observations. We should make 
these choices jointly. 

Let us start with focus. The question is whether we should use every past obser-
vation in our prediction, as in linear regression, or instead focus on a subset of the 
most relevant observations. This decision entails a trade-off. As we narrow our focus, 
we might see stronger alignment among the data in the relevant subsample. How-
ever, this also introduces noise to the prediction because the subsample has fewer 
observations. Therefore, we should narrow our focus to the extent that the benefit 
of doing so (stronger subsample alignment) outweighs the cost (incremental noise). 
Fortunately, we can use fit to calibrate this decision. Fit recognizes the benefits and 
the costs of censoring data and quantifies them accordingly. Therefore, when forming 
a prediction, we can try a range of relevance thresholds for censoring the sample and 
select the one with the highest fit. Every time we predict, we can choose a different 
threshold.

Now let us turn to variable selection. To determine relevance, we must choose a 
collection of variables. This decision also entails a trade-off. Using a large number 
of variables can provide a richer picture of relevance. If a variable contributes more 
noise than information, however, it will harm our determination of relevance. Here, 
again, we can use fit to guide our decision. In this case, we can determine relevance 
using different groups of variables and select the group that maximizes fit. Every 
time we predict, we can choose a different set of variables that matter most to the 
prevailing environment. 

These two decisions—focus and variable selection—are codependent. In order 
to select a subset of relevant observations, we need variables to determine their 
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relevance; and in order to select a group of variables, we need observations to deter-
mine if they are useful. Given this codependence, it is optimal to make these choices 
jointly. We refer to this process as CKT regression. For a given prediction task, we 
consider various combinations of relevance thresholds (for determining focus) and 
variables (for determining relevance), and we select the combination that maximizes 
fit. We repeat this process for each new prediction, adapting our choices in response 
to the new circumstances.

COMPARISON TO LINEAR REGRESSION AND MACHINE LEARNING

How does relevance-based prediction compare with other data analysis methods? 
Here we consider linear regression and machine learning, and we compare them 
with relevance-based prediction according to our guiding principles of transparency, 
adaptability, and non-arbitrariness. 

Linear Regression

Let us start with linear regression, a staple of data analysis for the last two 
centuries. Linear regression analysis focuses on the selection of predictive variables 
(or X variables) and weights them based on an assumed linear relationship with 
outcomes (the Y variable). These weights, or betas, are determined by fitting a line 
through a scatter plot of observed values for the predictor variables and outcomes.5 
Then, the prediction for an unknown outcome is simply the beta-weighted average of 
the corresponding values for the X variables.

Linear regression’s greatest strength is its theoretical underpinning. It is an ele-
gant approach founded on rigorous principles. However, it is limited in a significant 
way. Linear regression fails in the presence of complexity such as an asymmetric 
relationship between predictive variables and outcomes. Moreover, although it offers 
transparency as to the importance of each predictive variable and a model’s average 
reliability, it is opaque with respect to the importance of each observation and the 
reliability of an individual prediction.

To summarize:

§	Transparency: Linear regression provides some transparency but is silent 
about how each observation informs a prediction and does not provide infor-
mation about the quality of a specific prediction. 

§	Adaptability: Linear regression works well only if the influence of the predictive 
variables on the prediction is static across all observations. It fails in the pres-
ence of complex relationships between predictive variables and outcomes.

§	Non-arbitrariness: Linear regression analysis is theoretically justified.

Machine Learning

Now let us turn to machine learning, which addresses complexities that are 
beyond the capacity of linear regression. For our purposes, it is helpful to clas-
sify machine-learning techniques into two categories: model-based and model-free 
algorithms.

5 More precisely, it fits a line such that the sum of the squared distances of the observations from 
the line is minimized. Carl Friedrich Gauss, who originated this method of least squares circa 1795, 
proved that it gives a prediction whose expected variance from the truth is lower than any other linear 
and unbiased estimate.
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Model-based algorithms are enhancements to linear regression analysis. 
Examples of model-based algorithms include lasso regression, tree-based algorithms, 
and neural networks. These techniques rely on an iterative process whereby you 
specify a decision rule, calibrate the rule, and then test the rule until you are satisfied 
with the results. Model-based algorithms are powerful in that they can be extraor-
dinarily flexible in how they approach a wide range of complexities. After their final 
calibration, however, they are incapable of adapting to new circumstances. Moreover,  
model-based algorithms are notoriously opaque and rely on trial and error rather 
than theory.

Model-free algorithms form their predictions as weighted averages of prior out-
comes. In this respect, they are similar to relevance-based prediction. Examples of 
model-free algorithms include near neighbors and Gaussian kernels. These models 
are adaptive in that they revise their weights with each new prediction task. However, 
the weights themselves lack a theoretical core.

To summarize:

§	Transparency: The most powerful model-based algorithms are opaque and 
hard to interpret.

§	Adaptability: Machine-learning algorithms do not adapt to new prediction  
circumstances. 

§	Non-arbitrariness: Machine learning is guided by empirical efficacy rather than 
by a core set of theoretical principles. They are, therefore, susceptible to algo 
mining.

Relevance-Based Prediction

This brings us to relevance-based prediction. Like linear regression,  
relevance-based prediction is not arbitrary. It is theoretically justified and mathemat-
ically unified with linear regression. Moreover, it improves upon linear regression in 
two key ways. First, it provides transparency into the importance of each observation 
as well as the reliability of an individual prediction. And second, it can address such 
complexities as asymmetric or conditional relationships, just as machine learning 
does. However, relevance-based prediction is more transparent, more adaptive to 
new circumstances, and less arbitrary than most machine-learning algorithms.

To summarize:

§	Transparency: Relevance-based prediction shows precisely how the observa-
tions inform the prediction, and it quantifies the confidence we should assign 
to each unique prediction task.

§	Adaptability: Relevance-based prediction identifies the optimal sample of 
observations and collection of variables simultaneously for each prediction 
task based on the prevailing circumstances of the prediction task.

§	Non-arbitrariness: Relevance-based prediction is theoretically justified and 
mathematically unified with linear regression analysis.

CONCLUSION

Relevance-based prediction is a new, theoretically justified approach for forming 
predictions from data, which addresses complexities that are beyond the capacity 
of linear regression analysis in a way that is more transparent and more adaptive to 
new circumstances than machine-learning algorithms. It enables us to determine the 
relevance of past experiences based on their informativeness and similarity to current 
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circumstances, in a precise mathematical way. This observation-centric perspective 
paves the way for greater transparency and flexibility. It allows us to form predictions 
from a subset of relevant observations, which helps address complex relationships. 
It enables us to judge the reliability of an individual prediction based on historical 
patterns in the data. And it empowers us to adapt our choice of observations and 
variables for each prediction task.
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