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Co-Occurrence: A New Perspective 
on Portfolio Diversification

William Kinlaw, Mark Kritzman, and David Turkington

KEY FINDINGS

n	 Co-occurrence, which measures the co-movement of cumulative returns of a portfolio’s 
assets over an investor’s horizon, gives a better measure of the assets’ potential to 
diversify a portfolio than their correlations.

n	 The correlations of higher-frequency returns are useful only to the extent they predict 
co-occurrences during an investor’s horizon.

n	 Correlation has been a poor predictor of co-occurrence historically because it has 
not been stationary, nor has it been constant across the return intervals used to 
measure it.

ABSTRACT

Investors seek to diversify a portfolio by combining assets that have low correlations with 
each other, but a correlation coefficient is a useful guide to diversification only under 
special conditions that rarely hold in practice. If returns are not serially independent and 
if they do not conform to a stable multivariate normal distribution, correlation will not 
provide a reliable guide to the asset co-occurrences that a portfolio is likely to experience.  
The authors provide evidence that assets frequently violate these assumptions of serial inde-
pendence, stationarity, and normality. These empirical realities cast serious doubt on the 
usefulness of full-sample correlations to measure an asset’s potential to diversify a portfolio.  
The authors introduce a measure of co-occurrence as a fundamental building block of 
diversification. An informativeness weighted average of co-occurrence across a full sample 
equals correlation, but co-occurrence offers an intuitive and flexible way to assess com-
plexities of co-movement that lie beyond the grasp of any summary statistic. The authors 
present an alternative technique for diversifying a portfolio that explicitly considers the 
empirical prevalence of co-occurrences and thus the nonnormality of returns.

Harry Markowitz, in his landmark article “Portfolio Selection” (1952), taught 
investors to diversify a portfolio by combining assets that have low correlations 
with each other. Unfortunately, a correlation coefficient is a useful guide to 

diversification only under special conditions that rarely hold in practice. First, returns 
must be independently distributed over time for correlation to offer a good estimate 
of how asset returns co-occur cumulatively over an investor’s prospective horizon. 
Second, returns must conform to a normal distribution for a correlation coefficient to 
characterize the range of possible asset co-occurrences accurately. Both assumptions 
are at odds with reality. We offer evidence that correlations differ depending on the 
return interval used to estimate them, which belies the notion that returns are serially 
independent. Additionally, we show that many assets exhibit significantly different 
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patterns of co-movement across high- and low-interest-rate regimes and between 
turbulent and quiescent market conditions and that they vary asymmetrically around 
return thresholds. This evidence strongly contradicts the assumption that returns are 
identically distributed according to a normal distribution. Correlation is a summary 
statistic that averages across many instances of co-occurrence. The empirical reali-
ties of returns demand that we view co-occurrence with greater precision.

We proceed by fi rst defi ning co-occurrence and describing its role as the 
fundamental building block of correlation. Next, we show how serial dependence in 
returns undermines the usefulness of short-term correlations as a guide to multi-
period co-occurrence. We then provide evidence that co-occurrence varies across 
regimes and is asymmetric around return thresholds. Finally, we propose a portfolio 
construction technique that accounts for all these complexities by considering the 
full spectrum of co-occurrences directly, rather than relying on correlation, which is 
an oversimplifi ed summary of the diversifi cation properties of assets.

CO-OCCURRENCE

Co-occurrence measures the cumulative co-movement of pairs of assets during a 
specifi ed horizon, which is what determines diversifi cation. If the cumulative return of a 
potentially diversifying asset converges to the cumulative returns of the other portfolio 
assets during the investor’s horizon, it provides no diversifi cation regardless of how 
it comoved over shorter intervals within the investor’s horizon or how it comoved 
on average during prior periods of equal length to the investor’s horizon. Therefore, 
correlation is a useful guide to diversifi cation only if it gives a good estimate of 
co-occurrence during an investor’s prospective horizon.

To be more specifi c, consider the co-movement of the returns of two different 
assets, which we call variables XA and XB, which both have observations for time 
periods i = 1, 2, …, N. We wish to measure co-occurrence for a single observation of 
i that represents one time period. Using the sample means, xA and xB, and the sam-
ple standard deviations, σA and σB, we convert each observation into a standardized 
z-score as follows:

zi,A =
xi,A − xA
σ A

 (1)

zi,B =
xi,B − xB
σB

(2)

The co-occurrence of XA and XB for observation i is defi ned as

ci (A,B) =
zi,Azi,B

1
2
(zi,A

2 + zi,B
2 )

 (3)

This measure of co-occurrence has the following desirable properties, which 
allows us to interpret it as a pure measure of the point-in-time alignment of an 
observation of two variables.

 The highest value is +1, which occurs when both assets move by the same 
extent in the same direction.
 The lowest value is −1, which occurs when both assets move by the same 

extent in opposite directions.
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 The value is zero if either asset has a z-score of zero.1

 The value may equal any number between −1 and +1, indicating the extent 
of alignment.
 The value indicates direction and not extent: Any points that lie along a line 

through the origin (a scalar multiple of zi,A and zi,B) have the same co-occurrence.

We must also defi ne the joint informativeness of an observation of XA and XB

as shown by Equation (4):

infofof i (A,B) =
1
2
(zi,A

2 + zi,B
2 ) (4)

This perspective enables us to view the traditional full-sample Pearson correlation 
coeffi cient as a weighted average of the co-occurrence of each observation, in which 
each observation’s weight equals its informativeness as a fraction of the total infor-
mativeness of the sample.

ρ(A,B) =
i=1

N

∑wici (A,B) (5)

wi =
infofof i (A,B)

k=1

N∑ infofof k (A,B)
 (6)

We place greater weight on observations of co-occurrence that come from large-
magnitude returns because these returns convey more information than observations 
of small-magnitude returns, which mostly refl ect random noise.

The equivalence of this defi nition of correlation with the traditional Pearson 
formula occurs because 

The equivalence of this defi nition of correlation with the traditional Pearson 
∑k=1

N infofof k (A,B) = N − 1, therefore

ρ(A,B) =
i=1

N

∑wici (A,B) (7)

ρ(A,B) = 1
N − 1 i=1

N

∑ infofof i (A,B)ci (A,B) (8)

ρ(A,B) = 1
N − 1 i=1

N

∑z∑z∑ i,Azi,B (9)

ρ(A,B) = 1
σ AσB

1
N − 1 i=1

N

∑ (xi,A − xA)(xi,B − xB ) (10)

ρ(A,B) = Cov(A,B)
σ AσB

(11)

1 If both assets have z-scores of zero, the equation is technically undefi ned, as zero divided by 
zero. However, in this rare instance we should defi ne co-occurrence to be equal to zero. Its value will 
not have any infl uence on further assessments of sample (or subsample) correlation, because as we 
will soon argue, co-occurrence must be scaled by the informativeness of an observation, which itself 
equals zero in the case of two zero z-scores.
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This approach to calculating correlation is also useful because it allows us 
to compute a helpful measure of co-movement for a subsample, Φ. We defi ne a 
subsample measure of co-movement as a weighted average of the same quantities 
over a subsample of the observations:

ρΦ (A,B) =
i∈Φ
∑wici (A,B)  (12)

wi =
infofof i (A,B)

k∈Φ∑ infofof k (A,B)
(13)

As a measure of subsample co-movement, ρΦ(A, B) has the following desirable 
properties:

 The value ranges between −1 and +1, as it does over the full sample.
 The value is defi ned for any size subsample, even for a single observation, 

in which case it converges to the observation’s co-occurrence.
 If co-occurrence is symmetric around zero, the expected subsample estimate 

based on positive values will equal that of negative values, and both will equal 
the full sample correlation.
 The measure is centered around the full-sample mean, as opposed to the 

subsample mean, which facilitates interpretation of subsample properties 
in the context of the broader distribution. This is analogous to the way that 
semivariance is computed around the full sample mean, rather than the mean 
of downside returns. If it were not, we might erroneously conclude that down-
side returns are less volatile than the full sample since they are clustered 
around a “local” negative mean.

To summarize, co-occurrence measures the alignment of the cumulative returns of 
a pair of assets in each investment period. It determines the amount of diversifi cation 
that occurs in that period. Correlation is equal to a weighted average of co-occurrence 
across all such periods in a data sample, where each observation’s weight is equal 
to the informativeness (joint magnitude) of its returns. We can compute subsample 
averages of co-occurrence to study the regime-specifi c properties of diversifi cation, 
similar to how we can compute subsample averages of returns to study how they 
differ from a broader average. Thus, co-occurrence offers an intuitive way to study 
subsample co-movement, which always lies between −1 and +1 and which converges 
to co-occurrence when evaluated for a single observation and converges to the cor-
relation coeffi cient when evaluated across every observation in a sample.

Our foregoing discussion of the connection of co-occurrence to correlation 
assumes implicitly that we estimate correlations from return intervals that correspond 
to the length of our investment horizon. We framed our discussion this way for 
expository convenience. However, investors with multiyear horizons do not typically 
estimate correlations this way. Typically, they estimate correlations from shorter 
interval returns and assume they are invariant to the return interval used to estimate 
them. Therefore, to evaluate the effi cacy of correlation as a guide to cumulative 
co-occurrence, we must consider two broad features of the data: 1) the autocor-
relations and lagged cross-correlations of short interval returns, which determines 
the divergence of co-movement across return intervals; and (2) the nonstationar-
ity of co-movement across different regimes and around return thresholds, which 
determines the nonnormality and asymmetry of co-occurrence.
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DIVERGENCE

Divergence refers to the notion that correlations estimated from a given return 
interval will differ from correlations estimated from a different return interval, even 
for the same measurement period, if either asset’s autocorrelations or their lagged 
cross-correlations are nonzero at any lag.2

Consider the following example, which is contrived from 20 return observations 
of two hypothetical assets.

Monthly correlation

Bimonthly correlation

0.50

Correlation of �rst asset with lag of second asset
Correlation of second asset with lag of �rst asset

–0.20
–1.00

Autocorrelation of �rst asset
Autocorrelation of second asset

–0.50
–0.50

–0.20

Exhibit 1 shows the cumulative returns of these hypothetical assets. It reveals 
that even though these assets’ monthly returns are 50% correlated, they diverge 
signifi cantly over the full period, resulting in a −0.20 bimonthly correlation.

Exhibit 2 confi rms, in dramatic fashion, that divergence is not merely a hypothet-
ical phenomenon. It shows scatter plots of US equity and emerging market equity 
returns for monthly, annual, and 5-year return intervals over the same 25-year period. 
Whereas the correlation of monthly returns was 0.66, the correlation of annual returns 
was 0.49, and the correlation of 5-year returns was −0.08.

Equations (14) and (15) show explicitly how nonzero lagged correlations affect the 
relationship between high- and low-frequency standard deviations and correlations, 

2 For a detailed discussion of divergence, see Kinlaw, Kritzman, and Turkington (2014).

EXHIBIT 1
Cumulative Returns of Hypothetical Assets with Positive Correlation
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EXHIBIT 2
Scatter Plot of US Equity and Emerging Market Equity Returns at Monthly, Annual, and Five-Year Intervals 
(1988–2022)
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respectively. These calculations assume that the instantaneous rates of return of 
the assets are normally distributed with stationary means and variances.

The standard deviation of the cumulative continuous returns of x over q periods, 
xt +!+ xt+q−1, is given by Equation (14).

σ(xt +!+ xt+q−1) = σ x q + 2
k=1

q−1

∑ (q − k)ρxt ,xt+k
 (14)

In Equation (14), σx is the standard deviation of x measured over single-period 
intervals. Note that if the lagged autocorrelations of x all equal zero, the standard 
deviation of x will scale with the square root of the horizon, q.

Now we introduce a second asset, y, whose continuously compounded rate of 
return over the period t − 1 to t is denoted yt. The correlation between the cumulative 
returns of x and the cumulative returns of y over q periods is given by Equation (15).

ρ(xt +!+ xt+q−1, yt +!+ yt+q−1) =

qρxt ,yt
+

k=1

q−1∑ (q − k)(ρxt+k ,yt
+ ρxt ,yt+k

)

q + 2
k=1

q−1∑ (q − k)ρxt ,xt+k
q + 2

k=1

q−1∑ (q − k)ρyt ,yt+k

 (15)

The numerator equals the covariance of the assets taking lagged cross-correlations 
into account, whereas the denominator equals the product of the assets’ standard 
deviations as described by Equation (14). This equation allows us to assume values 
for the autocorrelations of x and y, as well as the lagged cross-correlations between 
x and y, to compute the correlations and standard deviations that these parameters 
imply over longer horizons. Of course, it would be quite challenging to estimate 
all these autocorrelations and lagged cross-correlations, which, as we show later, 
is unnecessary given our proposed method for constructing portfolios.

We next show that correlations differ across regimes even when they are esti-
mated from the same return intervals.

REGIME DEPENDENCE

Interest Rate Regimes

Perhaps the most important co-occurrence is that of bonds with equities, which 
history has shown is not stationary, but rather dependent on the level of interest rates. 
Moreover, this dependency makes sense when we consider how bonds contribute to 
diversifi cation. When interest rates are high, bonds offer a competitive return to equities, 
especially on a risk-adjusted basis. During high-interest-rate regimes, bonds offer only 
modest diversifi cation, but investors are willing to include them in their portfolios for 
their expected return. When interest rates are low, bonds are not competitive with equi-
ties from the standpoint of expected return, whether risk adjusted or not. Their purpose 
in a low-interest-rate regime is to offset potential equity losses. Therefore, when interest 
rates are low investors own bonds only if they are signifi cantly negatively correlated 
with equities. This notion is borne out empirically. When 10-year Treasury yields were 
above their median of 5.71%, the co-movement of stocks and bonds was 0.47, whereas 
it was −0.18 when 10-year Treasury yields were below their median.3

3 Co-movement is calculated as the monthly co-movement of annual returns and is based on the 
S&P 500 Total Return Index (from Robert Shiller’s website) and the Bloomberg Long US Government 
Bond Index (from Datastream) from 1974 to 2022. We partition the data into two interest rate regimes 
using a threshold equal to the median 10-year Treasury yield during this period, which was 5.71%.
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Stability Regimes

Co-occurrence also differs depending on whether market conditions are turbulent 
or quiescent. Whereas it is straightforward to observe the level of interest rates, 
turbulence is more diffi cult to measure. Turbulence occurs when disruptive events 
cause asset returns to depart signifi cantly from their typical pattern of behavior. For 
example, one or more assets may produce a return that is substantially above or below 
its average return or a pair of assets that usually move together may drift apart. We 
use a statistic called the Mahalanobis distance to measure unusual return behavior, 
as shown in Equation (16).

MD = (xi − x )Ω
−1(xi − x )′ (16)

In Equation (16), MD equals the Mahalanobis distance, xi is a vector of asset 
returns, x is the average of the asset returns, and Ω−1 is the inverse covariance matrix 
of the asset returns.

The term (xi− x ) captures the extent to which an asset’s return is independently 
unusual. By multiplying this measure of independent unusualness by Ω−1, the inverse 
of the covariance matrix, we capture unusual interactions across the pairs of assets, 
and at the same time, we standardize the values by dividing by variance. We then 
post-multiply by the transpose of (xi− x ), to convert the result of all these operations 
into a single number, which represents the unusualness of a set of returns for a given 
period such as a day, a month, or a year.

Exhibit 3 shows how patterns of co-occurrence differ between turbulent and 
quiescent market regimes. In this case, we estimate the Mahalanobis distance, given 
by Equation (16), for each year from 1988 through 2022 across fi ve asset classes: 
US equities, foreign equities, emerging market equities, Treasuries, US corporate 
bonds, and commodities. Then we compute subsample co-movement between US 

EXHIBIT 3
Subsample Co-Movement for US Equities vs. Other Assets during Turbulent and Quiescent Periods (1988–2022)

NOTES: This exhibit shows the monthly return co-movement for the 20% turbulent years as given by Equation (16) and the 20% quiet 
years between 1998 (when data for emerging markets become available) and 2022. We use the S&P 500 Total Return Index (from 
Robert Shiller’s website) for US equities, the Bloomberg US Treasury Bond Index (from Datastream) for Treasuries, the MSCI Emerging 
Markets Total Return Index (from Datastream) for emerging market equities, the Bloomberg US Corporate Bond Total Return Index 
(from Datastream) for US corporate bonds, and the GSCI Commodities Index for commodities.
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equities and each other asset class during the 20% most turbulent years and the 20% 
quietest years, using Equation (12).

Exhibit 3 reveals that the co-movement of US equities with emerging market and 
foreign equities during turbulent periods is signifi cantly higher than it is during quies-
cent periods. Similarly, the correlation between US equities and US corporate bonds 
is also signifi cantly higher during turbulent periods when equities tend to decline and 
credit spreads widen.

Turbulence can coincide with unusual positive returns as well as negative returns. 
We expect, and shall observe in Exhibit 5, that Treasuries act as a diversifi er when 
equities perform poorly. However, there are also turbulent periods where Treasuries 
and equities rise in unison, which is why we do not observe a more negative correla-
tion during turbulent environments in Exhibit 3.

Return Thresholds

Now, let us consider how correlations differ around return thresholds, which 
is complicated for several reasons. First, we must consider when diversifi cation is 
benefi cial to a portfolio and when it is not. The simulated scatter plot in Exhibit 4 
illustrates the difference between benefi cial diversifi cation and diversifi cation that 
harms a portfolio. Consider two hypothetical assets, X and Y. Imagine that asset X
is the main growth driver in the portfolio and that we have selected asset Y to 
diversify it. When asset X is performing well, we would prefer that asset Y also per-
form well. These outcomes refl ect desirable upside unifi cation and are associated 
with the upper-right quadrant of Exhibit 4. Alternatively, when asset X is experiencing 
losses, we would prefer that asset Y decouple from asset X to offset those losses. 
Therefore, we should consider only the left-hand side of the scatter plot to measure 
the potential of asset Y to diversify unfavorable performance of asset X. And if we 
wish to measure an asset’s potential to reinforce favorable performance of asset X, 
we should consider just the right-hand side of the scatter plot.

Exhibit 4 also reveals why we cannot simply cal-
culate conventional correlation coeffi cients from a 
truncated sample to measure an asset’s diversifi ca-
tion properties. The correlation of Y with X when the 
returns of X are below a threshold will be lower than 
the full sample correlation because we have excised 
the opposing returns in the upper-right quadrant, which 
otherwise would pull up the correlation. In this example, 
the correlation of the thus-truncated return sample in 
relation to the respective subsample means is 0.33 
as opposed to 0.50 for the full sample. We might be 
tempted to conclude that diversifi cation increases 
given this lower correlation for the truncated sample, 
but this interpretation would be incorrect. These differ-
ences are an artifact of conditional correlation math 
with subsample means and do not indicate any change 
in the relationship between the two assets.4 By con-
trast, our proposed measure of co-occurrence and its 
summary for a subsample as given by Equation (12) 
retain the perspective of the full-sample means, which 
makes them straightforward to interpret.

Exhibit 5 shows subsample co-movement for US 
equities versus each of the other fi ve asset classes 

4 For more on truncated sample correlations, see Kinlaw et al. (2021) and Czasonis et al. (2022).

EXHIBIT 4
Scatter Plot of Two Hypothetical Asset Returns

Asset Y
Return

Asset X
Return

Desirable
Upside

Unification

Undesirable
Downside
Unification

X Decouples
from Y on the

Downside

Y Decouples
from X on the

Downside

It 
is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rti
cl

e,
 fo

rw
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r o
r t

o 
po

st
 e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r p

er
m

is
si

on
. 



10 | Co-Occurrence: A New Perspective on Portfolio Diversifi cation 50th Anniversary 2024

introduced in Exhibit 3. In this case, we report co-movement during the 20% best 
years for US equities as well as for the 20% worst years, using Equation (12). We again 
observe that co-movement among the equity asset classes is signifi cantly higher during 
periods when US equities perform poorly. In fact, US and emerging market equities 
hardly co-move at all during periods when US equities perform well. In other words, 
they exhibit little desirable upside unifi cation but an excess of undesirable downside 
unifi cation. Treasuries present the opposite profi le: during periods when US equities 
perform well, Treasuries co-move positively. When US equities experience drawdowns, 
investors fl ee to the safety of Treasury bonds, causing them to rally. This is an example 
of desirable downside decoupling.

We have thus far argued that diversifi cation depends on co-occurrence, the 
degree to which cumulative returns co-move synchronously or drift apart during 
an investor’s horizon. We have also argued that correlation is a useful guide to 
co-occurrence only if returns conform to a multivariate normal distribution, which 
requires them to be independent and identically distributed. We then provided 
stark evidence that returns are neither independent nor identically distributed. 
Now we show how to construct a portfolio based on an empirical sample that 
refl ects co-occurrence across multiple regimes and return intervals. Therefore, the 
approach accommodates nonzero autocorrelations and lagged cross-correlations, 
multiple regimes, asymmetry of co-occurrence around return thresholds, and asym-
metric preferences for diversifi cation, without any consideration of conventional 
correlation statistics.

FULL-SCALE OPTIMIZATION

Mean–variance optimization is a heuristic that yields an approximation of the optimal 
portfolio based on statistics, such as correlation, that summarize a return distribution. 
Investors sometimes refer to it as parametric optimization because it depends on 
parameters to approximate the true distribution. We propose as an alternative full-scale 
optimization, which considers every multivariate return observation for every asset in 

EXHIBIT 5
Subsample Co-Movement for US Equities vs. Other Assets during High- and Low-Return Periods (1988–2022)
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a return sample. It therefore evaluates co-occurrences explicitly and addresses all the 
complexities of empirical co-occurrence that we previously discussed.5

Before we describe full-scale optimization, it is worth discussing the divergence of 
correlations as a function of the return interval used to estimate them. If an investor’s 
only concern is to diversify cumulative returns over her prospective investment hori-
zon, it would be of no importance if the correlation of multiyear returns diverged from 
the correlation of monthly returns. The investor would only need to consider whether 
the correlation of multiyear returns gives a good estimate of the co-occurrence of 
returns over her prospective multiyear horizon. But it is natural and appropriate to 
worry about within-horizon outcomes as well. If a portfolio suffers signifi cant losses 
along the way to the conclusion of the investment horizon, an investor may alter the 
portfolio’s risk profi le prematurely or by necessity if external constraints demand a 
more cautious investment posture. All of this is to say that investors may have both 
a short-term horizon as well as a long-term horizon.

Full-scale optimization addresses this multihorizon sensitivity by using a return 
sample that comprises both short-term returns and multiyear returns for the same 
overall period.6

The key to incorporating both high- and low-frequency returns in a single return 
sample is to balance these returns properly, which means that every multiyear return 
must include all the short-term returns that go into it. And if the multiyear returns 
overlap, the short-term returns must be repeated accordingly. Thus, if an investor 
has a monthly horizon as well as a fi ve-year horizon, there should be 60 times as 
many monthly returns as fi ve-year returns. If there were fewer than 60 monthly 
returns for every fi ve-year return, the fi ve-year returns would have an outsized effect 
on the result.

After we build our multihorizon sample, we calculate the portfolio return of a 
candidate asset mix, expressed as a vector of portfolio weights, for each short-term 
period and each long-term period. We then convert these short-term and long-term 
portfolio returns into utility values given a chosen utility function. Next, we sum all 
the utilities for the short-term and long-term returns and store this value. We then 
repeat this process for another asset mix and carry on in this fashion until we have 
evaluated enough portfolios to ensure that one of the portfolios offers the highest 
possible utility.

We illustrate this process using annual and nonoverlapping cumulative fi ve-year 
returns from January 1988 through December 2022 for six asset classes. For the 
annual horizon, we assume a kinked utility function that assumes power utility with 
a curvature (risk aversion) parameter of 1.5 for returns above the kink and a slope 

penalty of 1 below the kink. We locate the kink at −5%. 
For the fi ve-year horizon, we assume values of 2.0, 
5.0, and 0%, respectively. This formulation is consis-
tent with the notion that investors are more averse to 
long-term losses than short-term losses.

We estimate expected returns as equilibrium 
returns derived from a full sample regression of 
each asset class’s returns on those of a market 
portfolio, assuming a 2% risk-free rate, a 4% market 
portfolio premium, and a market portfolio allocated 
as shown in Exhibit 6. For full-scale optimization, we 
also re-mean the monthly and fi ve-year returns in the 

5 The term “full-scale optimization” was coined by Paul A. Samuelson in a written correspondence 
to Mark Kritzman on July 16, 2003.

6 For a more thorough discussion of a multihorizon return sample, see Kritzman and Turkington (2022).

EXHIBIT 6
Market Portfolio and Equilibrium Returns
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Corporates
Commodities

30%
20%
10%
20%
15%

5%

8.3%
8.7%

11.8%
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mixed-frequency return sample to have the same equilibrium returns that we used in 
the mean–variance analyses.

The optimal full-scale and mean–variance portfolios are shown in Exhibit 7. We 
constrain all three portfolios to have the same expected returns. We report the fol-
lowing performance statistics for both one- and fi ve-year horizons: standard deviation, 
frequency of returns above the kink, best return, and worst return.

The yearly and fi ve-year mean–variance portfolios have the lowest standard 
deviation over their respective horizons. The other performance statistics reveal, 
however, that standard deviation does not tell the whole story. The full-scale, 
multihorizon optimal portfolio performs best in terms of avoiding losses below the 0% 
and 5% threshold values. Its best return and worst return are also higher than that of 
the mean–variance portfolios, for both annual and fi ve-year horizons. Given its more 
favorable range of returns, its higher volatility may refl ect desirable upside volatility. 
Or put differently, it tilts toward assets that unify with US equities when they per-
form well. This example illustrates how investors can use full-scale optimization to 
balance multihorizon performance objectives by blending higher- and lower-frequency 
returns. The method accounts for the actual co-occurrence of asset returns at every 
measurement interval.

SUMMARY

We introduced a new measure of portfolio diversifi cation called co-occurrence, 
which captures the co-movement of cumulative returns over a given investment period. 
We showed that an informativeness weighted average of a sample’s co-occurrences 
equals the traditional correlation coeffi cient, and we showed how co-occurrence 
offers an intuitive and fl exible tool with which to analyze the complex realities of 
diversifi cation that defy characterization by any summary statistic. We then argued 
that the full-sample correlation is a useful guide to diversifi cation only if it gives a 
good estimate of co-occurrence over an investor’s prospective horizon, and that 

EXHIBIT 7
Optimal Portfolios

US Equities
Foreign Equities
EM Equities
Treasuries
Corporates
Commodities

Standard Deviation
Frequency above Kink (–5%)
Best
Worst

Standard Deviation
Frequency above Kink (0%)
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19.6%
21.3%
14.3%
0.0%

42.8%
2.0%

12.4%
85.7%
29.3%

–28.0%

42.1%
100.0%
110.5%

3.5%

32.1%
19.5%
10.9%
17.3%
15.2%
5.0%

12.3%
82.9%
24.5%

–28.4%

41.2%
71.4%

102.4%
–0.4%
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19.5%
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83.6%
–0.9%
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this would be true only if returns are serially independent. We went on to show 
how nonzero autocorrelations or lagged cross-correlations cause correlations 
between assets to differ depending on the return interval used to estimate them, 
and we presented evidence that returns were neither individually nor jointly serially 
independent, which belies the notion of multivariate normality. We also provided 
evidence that co-occurrence, irrespective of the intervals used to estimate it, is not 
stationary across regimes and that it is not symmetric around return thresholds, which 
contradicts the notion of multivariate normality. And given asymmetric patterns of 
co-occurrence, we pointed out that although investors prefer downside diversification, 
they are averse to upside diversification. We then introduced a portfolio construction 
technique called full-scale optimization, which inherently accounts for all these com-
plexities of diversification without consideration of conventional correlation, including 
the possibility that investors have more than a single investment horizon.

APPENDIX A

ALTERNATIVE MEASURES OF SUBSAMPLE CO-MOVEMENT

We derive the measure of subsample co-movement in Equation (12) from the 
co-occurrence and informativeness of subsample observations, each of which reflects 
the mean and variance of the full sample. Alternatively, one might compute the correla-
tion of the observations in a subsample Φ based on re-estimated means and variances 
for the subsample. Both approaches can be used to detect correlation asymmetry by 
comparing statistics for subsamples that are above or below symmetric thresholds for 
the return of one of the assets.7 There are some advantages to using co-occurrence,  
as in Equation (12). First, it is easier to interpret because the means and variances remain 
constant. Second, we may rely on the fact that for a normal distribution, the subsample 
statistic above and below the average of one of the assets equals the full sample statistic.  
If we re-compute means and variances, this property does not hold (the subsamples 
have less correlation around their subsample means). For more extreme thresholds, the 
subsample correlation for a normal distribution becomes increasingly small, and a proper 
empirical analysis must account for this mechanical fact.

The trend is reversed for co-occurrence. As we condition on increasingly extreme 
thresholds for the return of one asset, the weighted average co-occurrence of the sub-
sample rises in the case of a normal distribution. This effect is not artificial. It occurs 
because more-extreme observations are more informative, which means they are less 
polluted by noise. To the extent there is a relationship between two assets, it is likely to be 
most apparent among extreme-magnitude observations, resulting in higher co-occurrence.

APPENDIX B

CO-OCCURRENCE AND CORRELATION SURPRISE

For some applications, it is interesting to compare the co-occurrence of an observation 
with the weighted average co-occurrence of all observations in the sample (which equals 
the correlation). In other words, we can ask the question: how surprising is a given obser-
vation of co-occurrence? Kinlaw and Turkington (2013) define a measure of correlation 

7 It is preferable to condition on the returns of one asset rather than jointly conditioning on both 
assets performing well versus both assets performing poorly. The most impactful diversification occurs 
when one asset is down and the other is up. Double conditioning eliminates these most important 
observations. For more discussion on this topic, see Kinlaw et al. (2021).
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surprise for any number of assets as the ratio of two Mahalanobis distances: one that 
accounts for the actual correlations among the assets and one that assumes all the cor-
relations are zero. The Mahalanobis distances can be expressed in terms of normalized 
z-scores, in which case the denominator equals the Euclidean distance of the normalized 
z-scores:

CSCSC i =
ziP

−1 ′zi
zi ′zi

(B1)

In Equation (B1), zi is a row vector for a chosen observation, P−1 is the inverse of 
the asset correlation matrix, and ′ denotes matrix transpose. Intuitively, the numerator 
represents joint unusualness in magnitude and orientation, while the denominator rep-
resents unusualness in magnitude only. The ratio represents unusualness in orientation 
only. For two assets, the standard matrix inversion formula gives

P−1 = 1
1 − ρ2

1 −ρ
−ρ 1

⎛

⎝
⎜
⎛
⎜
⎛

⎝
⎜
⎝

⎞

⎠
⎟
⎞
⎟
⎞

⎠
⎟
⎠

(B2)

Next, we multiply out the matrices for correlation surprise:

CSCSC i (A,B) =
1

1 − ρ2

zi,A
2 + zi,B

2 − 2ρzi,Azi,B
zi,A
2 + zi,B

2
(B3)

CSCSC i (A,B) =
1

1 − ρ2 1 −
ρzi,Azi,B

1
2
(zi,A

2 + zi,B
2 )

⎛

⎝
⎜
⎛
⎜
⎛

⎜⎝⎜⎝
⎜
⎜
⎜

⎞

⎠
⎟
⎞
⎟
⎞

⎟⎠⎟⎠
⎟
⎟
⎟ (B4)

CSCSC i (A,B) =
1 − ρci (A,B)

1 − ρ2 (B5)

Equation (B5) shows how correlation surprise for a pair of assets depends on 
both co-occurrence and the full-sample correlation. Correlation surprise equals 1 when 
co-occurrence equals correlation. The informativeness-weighted average of correlation 
surprise also equals 1. The least surprising co-occurrence for positively correlated assets 
is 1, and the most surprising co-occurrence for positively correlated assets is −1. The 
reverse is true for negatively correlated assets. For assets that are strongly correlated, 
the maximum possible surprise from a divergence is very large. For uncorrelated assets, 
every observation is equally surprising and has a correlation surprise equal to 1.

Correlation surprise measures the degree to which an observation diverges from the 
typical direction of co-movement. We can substitute correlation surprise for co-occurrence 
in Equation (12) to quantify the degree of correlation surprise that is present in a sample, 
relative to the full sample correlation as a baseline. For positively correlated assets, 
correlation surprise events may offer welcome diversifi cation during bad times. But cor-
relation breakdowns are not always good. We can use correlation surprise to stress test 
the performance of any portfolio that is formed by assuming average correlations. In 
addition, Kinlaw and Turkington (2013) show that correlation surprise often serves as a 
leading indicator of volatility spikes.
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