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Investors have long recognized the impor-
tance of liquidity but have struggled to 
determine how to account for it when 
forming portfolios. We propose that inves-

tors treat liquidity as a shadow allocation to a 
portfolio. If investors deploy liquidity to raise 
a portfolio’s expected utility beyond its orig-
inal expected utility, we attach a shadow asset 
to tradable assets. If instead investors deploy 
liquidity to prevent a portfolio’s expected utility 
from falling, we attach a shadow liability to 
non-tradable assets. This approach improves on 
other methods of incorporating liquidity into 
portfolio choice in four fundamental ways.

First, it mirrors what actually occurs 
within a portfolio. Second, it maps units of 
liquidity onto units of expected return and 
risk, so that investors can analyze liquidity in 
the same context as other portfolio decisions. 
Third, it enables investors to address abso-
lute illiquidity and partial illiquidity within 
a single, unifying framework. Fourth, it rec-
ognizes that liquidity serves not only to meet 
demands for capital, but also lets investors 
exploit opportunities, revealing that investors 
bear an illiquidity cost to the extent that any 
portion of a portfolio is immobile.

RELATED LITERATURE

Researchers have considered the topic 
of illiquidity from a variety of perspectives. 
Takahashi and Alexander [2002] developed 

a financial model to project illiquid assets’ 
future values and cash f lows. Perhaps the 
approach most similar to ours is that of Lo, 
Petrov, and Wierzbicki [2003]. They intro-
duced liquidity as a constraint or additional 
dimension in the mean–variance optimiza-
tion process. Their approach, however, does 
not map liquidity onto units of return and risk, 
so investors must treat liquidity as a separate 
portfolio feature. Our approach, by contrast, 
unifies liquidity, return, and risk.

Getmansky, Lo, and Makarov [2004] 
investigated illiquidity and serial correlation 
of hedge fund returns. Hill [2009] argued 
that long option positions provide a natural 
hedge for liquidity risk. Ang, Papanikolaou, 
and Westerf ield [2010] investigated how 
trading restrictions affect portfolio choice; 
they  showed that illiquidity increases risk 
aversion and distorts the allocation of liquid 
and illiquid assets. Anson [2010] introduced 
a framework for measuring liquidity risk 
across asset classes. Golts and Kritzman [2010] 
proposed that investors consider purchasing 
liquidity options to meet unscheduled capital 
calls; they described how to structure and 
price these options. Hu, Pan, and Wang [2010] 
measured illiquidity’s time variation from the 
deviations of observed yields relative to a fitted 
yield curve. Beachkofski et al. [2011] simulated 
portfolio performance with restrictions on 
trading; they measured the cost of illiquidity as 
the certainty equivalent reduction of expected 
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utility. Most recently, Kyle and Obizhaeva [2011] tested 
the intuition that the size and costs of transferring risk 
in “business time” is constant across assets and time. In a 
companion paper, Kyle and Obizhaeva [2011] developed 
formulas for estimating impact and spread costs.

BENEFITS OF LIQUIDITY

In order to treat liquidity as a shadow allocation 
to a portfolio, we must estimate its expected return and 
risk, which in turn requires us to evaluate how investors 
benefit from liquidity. There are several obvious benefits: 
the ability to exercise market timing, rebalance a port-
folio, meet capital calls, reallocate part of a portfolio to 
newly discovered opportunities, exit from unproductive 
investments, and respond to shifts in risk tolerance. Some 
of this trading improves a portfolio's expected utility and 
thus constitutes a shadow asset which is attached to trad-
able assets. Some trading, however, occurs to prevent a 
decrease in expected utility, in which case we attach a 
shadow liability to assets that are not tradable. Below we 
distinguish whether these activities constitute a shadow 
asset or a shadow liability.

Market Timing

Some investors are skilled at anticipating the rela-
tive performance of asset classes or risk factors. We attach 
the expected return and risk of a market timing strategy 
as a shadow asset to the liquid portion of the portfolio, 
because this trading improves expected utility beyond 
the portfolio's initial expected utility.

Rebalancing

Investors choose portfolios they believe are 
optimal, given their views and attitudes about expected 
return and risk. Once they establish an optimal port-
folio, however, price changes cause the portfolio’s actual 
weights to drift away from the optimal targets, making 
the portfolio suboptimal. If the portfolio contains only 
liquid assets, investors can restore the optimal weights 
easily, though not without cost.1 To the extent some 
portion of the portfolio is allocated to illiquid assets, 
investors cannot implement the full solution, and the 
portfolio remains sub-optimal. In this case, we attach a 
shadow liability to illiquid assets, because their immo-

bility reduces the portfolio’s expected utility. The cost 
of this shadow liability equals the difference between the 
certainty equivalent of the suboptimal portfolio and the 
certainty equivalent of the optimal portfolio.2

Capital Calls

Investors must periodically liquidate a portion of 
their portfolios to meet capital calls. Pension funds, for 
example, may need to make unanticipated benefit pay-
ments. Many endowment funds and foundations commit 
to private equity and real estate funds, which demand 
capital sporadically, as investment opportunities arise. 
Private investors must occasionally replace lost income 
to meet their consumption demands. These liquidations 
can drive a portfolio away from its optimal mix. To the 
extent part of the portfolio is allocated to illiquid assets, 
the investor may not be able to restore full optimality. 
As with rebalancing, we measure this cost in certainty 
equivalent units and attach it to the illiquid assets as a 
shadow liability.

In rare instances, investors may be unable to liqui-
date a sufficient fraction of their portfolios to meet cap-
ital calls, requiring them to borrow. In these instances, 
we attach another shadow liability to the illiquid assets, 
to ref lect the cost and uncertainty of borrowing.

New Opportunities

Investors may discover new managers, new strate-
gies, or better ways to reconfigure existing portfolios. 
In these circumstances, we attach a shadow asset to the 
portfolio, to capture the improvement expected from 
reconfiguring it. Alternatively, investors may wish to 
exit existing positions they no longer expect to perform 
as originally predicted. In these situations, we attach a 
shadow liability to illiquid assets that cannot be removed 
from the portfolio.

Shifting Risk Tolerance

Investors may become more or less averse to risk as 
their circumstances change. In this case, we attach a 
shadow liability to the illiquid assets, because they 
limit the extent to which investors can respond to their 
shifting risk tolerances. As with portfolio rebalancing, 
we measure this cost in certainty-equivalent units.
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ABSOLUTE VERSUS PARTIAL ILLIQUIDITY

In our discussion thus far, we have implicitly treated 
liquidity and illiquidity as binary attributes. We should, 
instead, distinguish between absolute illiquidity and par-
tial illiquidity. Absolute illiquidity refers to situations 
in which the investor is contractually proscribed from 
trading the asset or the cost of trading is prohibitively 
expensive. In these cases, we cannot attach a shadow asset. 
We recognize that many liquid assets are at least partially 
illiquid, in the sense that they are costly to trade or can 
be traded only with delay. Costs and delays vary by asset 
and through time. We attach a shadow asset to partially 
illiquid assets, but we reduce its expected return by the 
cost of trading or by the extent to which delays limit the 
opportunity to benefit from trading. We thus neatly cap-
ture these varying degrees of illiquidity within a single, 
unifying framework.

ANALYTICAL CONSTRUCT

We introduce our analytical construct by using 
mean–variance analysis to solve for the optimal alloca-
tion to liquid equity and liquid bonds, first without con-
sidering the effect of liquidity.3 We identify the optimal 
weights by maximizing expected utility:4

E U r w r w w w w we e b br wb br w e e b b b e e b e( )E U( )E U ( ,b e,b e= +r w= +r w − +w w− +w w− + +λ σ(λ σ(λ σ(λ σ(− +λ σ− +(− +(λ σ(− +( σ ρw wσ ρw wb bσ ρb bw wb bw wσ ρw wb bw w +σ ρ+ σ σe bσ σe b
2 2− +2 2− + 2 2σ ρ2 2σ ρ2σ ρ2σ ρ bbb )  

(1)

where

 E(U) = expected utility
 r

e
 = expected equity return

 r
b
 = expected bond return

 σ
e
 = equity standard deviation

 σ
b
 = bond standard deviation

 w
e
 = equity weight

 w
b
 = bond weight

 λ = coefficient of risk aversion
 ρ

b,e
 = correlation of equity and bonds

The weights that equate the marginal utilities of 
equities and bonds, as shown below, are those that are 
optimal.5
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∂
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Next we substitute illiquid equity for liquid equity, 
but first we make two adjustments. We correct for the 
downward bias in the illiquid asset’s observed standard 
deviation, which arises from the effect of performance 
fees. For a single fund that accounts for performance fees 
annually, the illiquid asset’s net returns can be converted 
to gross returns:

 
r r b p r bn g g= −r r= −r r − −b p− −b p(b p(b p(b p(b p )b pmab pb p− −b pmab p− −b pb px ,b pb p− −b px ,b p− −b pb px ,b pb p− −b px ,b p− −b pb p(b px ,b p(b pb p− −b p(b p− −b px ,b p− −b p(b p− −b pb pmab px ,b pmab pb p− −b pmab p− −b px ,b p− −b pmab p− −b p ( )r b( )r bg( )g− −( )− −r b− −r b( )r b− −r bb p0b pb px ,b p0b px ,b pb p− −b px ,b p− −b p0b p− −b px ,b p− −b p *− −*− − (4)
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(5)

where

 r
n
 = return net of fees

 r
g
 = return gross of fees

 b = base fee
 p = performance fee

In practice, we perform a simulation to estimate the 
volatility dampening effect of performance fees when fee 
accrual accounting is used. On average, the true standard 
deviation is approximately 1.09 times larger than the 
standard deviation estimated from monthly net returns 
from funds using fee accrual.6

The second adjustment de-smoothes illiquid equity 
returns, to offset the reduced observed standard devia-
tion introduced by appraisals and fair-value pricing.7 We 
estimate a first-order autoregressive model using least 
squares. We specify the model as

 r A A rt tr At tr A A rt tA r= +r A= +r At t= +t tr At tr A= +r At tr A +−0 1A r0 1A rt t0 1t tA rt tA r0 1A rt tA r= +0 1= +t t= +t t0 1t t= +t t 1A r*A r ε  (6)

To de-smooth the time series, we compute

 
r

r A r

Atrtr
t tr At tr A′ =
r A−r A

−
1 1r1 1rt t1 1t trt tr1 1rt tr −1 1−

11
*1 1*1 1 (7)

where

 r
t
′ = de-smoothed return observation at time t

 r
t
 = return observation at time t

 A
0
 = intercept

 A
1
 = regression coefficient

 ε = error term
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Following these two adjustments, we switch illiquid 
equity for liquid equity. Then we attach the shadow asset 
to the bond portion of the portfolio and re-state the 
expected return, standard deviation, and correlation of 
bonds to account for the presence of the shadow asset, as 
shown in equations (8), (9), and (10).8

 r r rblr rblr rb lr rb lr r rb lr= +r r= +r rb l= +b lr rb lr r= +r rb lr r  (8)

 σ σ σblσ σblσ σb lσb lσ2 2σ σ2 2σ σ 2= +σ σ= +σ σb l= +b l
2 2= +2 2σ σ2 2σ σ= +σ σ2 2σ σ (9)

 
ρ

ρ σ
σbl e

b eρ σb eρ σb

bl
,

,b e,b e=
ρ σ*ρ σ

 
(10)

where

 r
bl
 =  expected return of bonds with shadow 

liquidity asset
 r

l
 = expected return of shadow liquidity asset

 σ
bl
 =  standard deviation of bonds with shadow 

liquidity asset
 σ

l
 = standard deviation of shadow liquidity asset

 ρ
bl,e

 =  correlation of bonds (with shadow liquidity 
asset) and equity

Exhibit 1 presents a simple numerical illustration 
of our analytical construct. It shows how the required 
return for equities changes as we switch from liquid equi-
ties to illiquid equities and then, step by step, adjust for 
the effects of performance fees, smoothing, and inclusion 
of the shadow asset.9

Column 1 shows that it is optimal to split the port-
folio equally between liquid equity and liquid bonds, given 
the indicated assumptions for their expected returns, stan-
dard deviations, and correlation, and assuming that the 
investor’s risk aversion coefficient equals 1. Notice that 
their marginal utilities are equal, demonstrating that we 
cannot improve expected utility by altering these weights. 
At this point we have not yet accounted for the expected 
return and risk of the shadow asset.

In column 2, we substitute illiquid equity for liquid 
equity and solve for the return required to produce the 
same weight, given the illiquid equity’s observed standard 
deviation. We have not yet corrected for the biases that 
performance fees and smoothing introduce. Not surpris-
ingly, these distortions imply (implausibly) that inves-
tors should require a lower expected return from illiquid 
equity than from liquid equity.

In column 3, we correct for the effect of performance 
fees on the observed standard deviation and illiquid equity 
correlation, using Equations (4) and (5). This correction 
raises the illiquid equity’s required return.

In column 4, we apply Equations (6) and (7) to cor-
rect for the smoothing that arises from fair-value pricing, 
which shows that investors should require a premium 
to justify the substitution of illiquid equity for liquid 
equity.

In column 5 we introduce the shadow liquidity 
asset and adjust the bond component's expected return 
and standard deviation, as well as its correlation with 
illiquid equity, using equations (8), (9), and (10). This 

E X H i B i t  1
Required Return for Liquid and Illiquid Equities
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final step gives the total expected return required of 
illiquid equity, taking into account the distortions 
introduced by performance fees and smoothing and the 
opportunity cost of forgoing liquidity.

The required illiquidity premium equals the dif-
ference between the required return in column 5 and 
the required return in column 4, which in our example 
equals 1.75%. This required illiquidity premium is 
slightly less than the shadow liquidity asset’s 2% expected 
return, because the shadow asset introduces risk as well 
as incremental expected return to the portfolio.

Suppose that illiquid equity has an expected return 
of 14.70% instead of 15.50%, offering an illiquidity pre-
mium of only 0.95%, compared to the required illiquidity 
premium of 1.75%. In this case, the optimal allocation to 
illiquid equity would fall from 50% to 45%, assuming all 
other assumptions remain unchanged. Alternatively, we 
could maintain our original 50% allocation to illiquid 
equity and solve for the shadow asset’s required return, 
given an expected return of 14.70% for illiquid equity. In 
this case, we would require an expected return of only 
1.20%, instead of 2%, from the shadow asset.10

It is important to note that even though there is a 
single market price for liquidity investors do not benefit 
equally from liquidity. Two investors with identical 
expectations and preferences, but different in the extent 
to which they benefit from liquidity, should not hold the 
same portfolio, just as investors with higher tax rates should 
be more inclined than investors with lower tax rates to 
hold tax-favored assets, such as municipal bonds.

PERFORMANCE FEES 
AND MULTIPLE FUNDS

We have already shown that performance fees cause 
the observed standard deviation of a fund to understate 
its risk. Performance fees also reduce the expected return 
of a group of funds that charge performance fees beyond 
the average reduction in the individual funds’ expected 
returns. Consider, for example, a fund that charges a 
base fee of 2% and a performance fee of 20%. A fund 
that delivers a 10% return in excess of the benchmark 
on a $100 million portfolio collects a $2 million base 
fee (2% × 100,000,000) and a $1.6 million performance 
fee (20% × (10,000,000 – 2,000,000)), for a total fee of 
$3.6 million. The investor’s net-of-fees return is 6.4%.

Now suppose an investor hires two funds that each 
charge a base fee of 2% and a performance fee of 20%. 

Assume that these funds both have expected returns of 
10% in excess of their benchmarks and that the investor 
allocates the same amount of capital to each. Each fund’s 
expected fee is 3.6% (2% + 20% × (10% – 2%)). The 
investor might expect an aggregate net return from these 
two funds of 6.4%. This will happen, however, only 
if both funds’ returns exceed the base fee. If one fund 
produces an excess return of 30% and the other a −10% 
excess return, the investor pays an average fee of 4.8%, 
not 3.6%, and gets an average return of 5.2%, not 6.4%, 
even though the funds still have an average excess return 
of 10%.11 Exhibit 2 summarizes these results.

This result is specific to this example’s assumptions. 
Nevertheless, a Monte Carlo simulation easily determines 
the typical reduction in expected return. Consider an 
investment in 10 funds, each with an expected excess 
return of 7%, a standard deviation of 15%, and a 
correlation of 0% with the other funds. Assume that 
the risk-free rate (benchmark) is 4%. The reduction 
to the collective expected fund return is about 0.7%. 
If the funds' correlations were higher, the reduction 
would be smaller and vice versa. This reduction in the 
collective return is a hidden fee that arises from the fact 
that investors pay for outperformance but are not reim-
bursed for underperformance. Exhibit 3 shows how the 
values derived in this example would differ if an investor 
substituted multiple funds for a multi-strategy fund.

E X H i B i t  2
Multi-Fund Return Impact

E X H i B i t  3
Multi-Strategy Fund vs. Multiple Funds
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In principle, this effect could be somewhat muted, 
because most performance-fee arrangements include 
claw back provisions that require funds to offset prior 
losses before collecting performance fees. In most cases, 
though, managers either terminate underperforming 
funds or reset performance fees without reimbursing 
investors for losses.

CASE STUDY

We now present a case study in which we apply 
our approach to a representative institutional portfolio, 
as shown in Exhibit 4. Our objective is to compare the 
optimal allocations that account for liquidity with those 
that ignore it.

These allocations are optimal for a mean–variance 
investor whose risk aversion coefficient equals 2, given 
the assumptions for expected returns, standard devia-
tions, and correlations shown in Exhibit 5. We adjust 
standard deviations to account for the effect of perfor-
mance fees and smoothing, as described earlier. These 
weights do not yet take liquidity into account.

We estimate the expected return and risk arising 
from three uses of liquidity: market timing, portfolio 
rebalancing, and funding capital calls. Investors typically 
estimate the expected return and risk of explicit assets 
from some combination of historical data and theoretical 
pricing models. However, there are no data for shadow 
allocations, nor are there any theories on which to rely, 
so we use simulation to estimate the shadow allocations' 
return and risk.

Market Timing

We assume that skillful market timing produces 
an excess return equal to 0.40%, with excess risk of 
0.80%. We derive these values by simulating a market-
timing strategy’s performance. Because liquidity serves 
to improve expected utility we attach these values as a 
shadow asset to the liquid assets.

Rebalancing

We simulate 10,000 five-year paths given assumptions 
about the portfolio allocation as well as the expected return, 
risk and correlations for each asset class.12 We consider two 
scenarios: one in which we rebalance the portfolio to its 
target weights annually (at a cost of 0.2%) and one in which 
we do not rebalance the weights. We compute the illi-
quidity penalty as the difference between the portfolios’ 
ending wealth distributions’ certainty equivalents in the two 
scenarios. Because liquidity serves to restore expected utility 
and not to improve it, we attach this difference in certainty 
equivalents as a shadow liability to the illiquid assets.

Capital Calls

We assume a 10% probability the investor will 
need to raise cash to meet capital calls in a given month. 

E X H i B i t  5
Asset Class Expected Returns, Risk, and Correlations

E X H i B i t  4
Optimal Portfolio Weights (Ignoring Liquidity)
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When a call arises, its size is drawn from a known prob-
ability distribution.13 As long as cumulative excess capital 
calls are below 15% of initial portfolio value, we draw 
on the liquid assets (proportionally) to meet capital 
calls. When cumulative excess capital calls exceed 15% 
of initial portfolio value, we begin borrowing to meet 
capital calls, at a rate of 5%. We do not allow cumula-
tive excess capital calls to exceed 20% of initial portfolio 
value. Using the same 10,000 paths from the rebalancing 
simulation, we take the difference between the certainty 
equivalents of two scenarios: one in which we remove 
capital calls proportionally from all assets and rebalance 
annually, and another in which we remove capital calls 
only from the liquid assets and do not rebalance. The 
incremental sub-optimality associated with capital calls 
is equal to the sub-optimality from this simulation minus 
the sub-optimality from the simulation that accounts 
for rebalancing, but not for capital calls.14 We deploy 
liquidity to restore optimality, so we attach a shadow 
liability to the illiquid assets that we cannot rebalance. 
We also attach a shadow liability to the illiquid assets 
to account for the cost and uncertainty of borrowing.15 
Exhibit 6 summarizes these shadow allocations.

Next, as shown in Exhibit 7, we augment Exhibit 5 
to account for the shadow asset and liability.

Finally, as shown in Exhibit 8, we re-optimize the 
portfolio to account for the effect of the shadow asset and 
liability. The bars to the left show the optimal alloca-
tions, assuming we ignore liquidity. They are the same 
as those shown in Exhibit 4. The bars in the center show 
the optimal allocations, taking liquidity into account, but 
assuming there is a single multi-strategy illiquid fund. 
With this assumption, the hedge fund and private equity 
allocations fall by 44% and 30%, respectively. The bars 
to the right assume multiple illiquid funds, which further 
reduces the allocation to both illiquid asset classes.16

This case study, though rooted in the real world, 
represents a first pass at implementing our model, so it 
overlooks a variety of complexities. For example, we 
assume that the shadow asset and liability are uncorre-
lated with the portfolio’s explicit assets. We also assume 
that portfolio returns are serially independent and drawn 
from the same distribution. We model both absolute and 
partial illiquidity as though they are constant across time 
and assets. We assume that the effects of liquidity are addi-
tive. Finally, we assume that the returns of the shadow 

E X H i B i t  6
Liquidity Benefits and Illiquidity Penalties

E X H i B i t  7
Asset Class Expected Returns, Risk, and Correlations
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allocations are normally distributed, though in some cases 
it may be more appropriate to model them as options. We 
could enrich our analysis by relaxing these assumptions.

SUMMARY

Investors have long struggled to account for 
liquidity in portfolio choice. Although other researchers 
have put forth clever models and heuristics for incorpo-
rating liquidity into portfolio choice, these approaches are 
either incomplete or fail to place liquidity in a common 
unit with return and risk. We introduce an analytical 
construct that treats liquidity as shadow allocations. If 
liquidity is deployed to raise expected utility, we attach 
a shadow asset to tradable assets to capture this incre-
mental benefit. Therefore, if any fraction of a portfolio 
is immobile, investors bear an illiquidity cost which they 
should take into account when forming portfolios.

Our model improves upon heuristic approaches 
for incorporating liquidity into portfolio choice in four 
fundamental ways. First, it mirrors what actually occurs 
within a portfolio. Second, it allows investors to map 
liquidity onto units of expected return and risk, enabling 
them to analyze liquidity in the same context as other 

portfolio decisions. Third, it allows inves-
tors to treat absolute illiquidity and partial 
illiquidity within a single, unifying frame-
work. Fourth, it accounts for the fact that 
liquidity serves not only to meet demands 
for capital, but also to exploit trading 
opportunities. If any fraction of a portfolio 
is immobile, investors bear an illiquidity 
cost; they should take that cost into account 
as they form portfolios.

ENDNOTES

We thank Antti Ilmanen, Hans Luede-
mann, Roger Stein, and participants at JOIM, 
the European Quantitative Forum, and the 
MIT Sloan School Finance Ph.D. Seminar for 
helpful comments.

1Investors can determine the appropriate 
rebalancing schedule by comparing the cost of a 
suboptimal portfolio with the cost of restoring 
the optimal asset weights. Kritzman et al. [2009] 
provide a dynamic programming solution to the 
optimal rebalancing problem, as well as a solu-
tion based on a quadratic heuristic, developed by 
Erik van Dijk and Harry Markowitz, to over-

come the curse of dimensionality.
2The certainty equivalent return for a given portfolio 

is the amount of risk free return required such that a given 
investor is indifferent between receiving that return and 
holding a particular risky portfolio.

3We illustrate our approach with mean–variance opti-
mization, but it can be applied to any portfolio formation pro-
cess, including full-scale optimization, multi-period models, 
and even heuristic approaches.

4See, for example, Markowitz [1952].
5See, for example, Sharpe [1987].
6We simulate 1,000 years of monthly fund returns from 

a normal distribution with an annualized mean of 8% and an 
annualized standard deviation of 8%. We assume an annual 
base fee of 2% and an additional annual hurdle rate of 3.5% 
before performance fees. We record a 20% annual performance 
fee on an accrual basis each month. If cumulative profit (net 
of the hurdle) turns negative for the year, we assess a nega-
tive performance fee on each month’s returns, maintaining a 
minimum annual fee of zero.

7Many studies have found evidence of positive serial cor-
relation in private market investment returns. See  Giliberto 
[2003] as an example.

8We assume that the shadow asset is uncorrelated with 
both stocks and bonds, an assumption we can relax.

E X H i B i t  8
Optimal Portfolio Weights (with and without liquidity)

Notes: We assume a risk aversion of 2. For the multiple funds scenario, we assume that hedge 
funds and private equity each consist of ten managers, and reduce both asset classes expected 
return by 0.70% to ref lect the multi-fund return impact of performance fees.
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9For convenience we assume that liquid asset trades 
are free of charge. We relax this assumption in the case study 
presented in the following section.

10We present this analytical construct for expository 
purposes. In practice, one could simply introduce the shadow 
asset as an overlay that does not require capital and constrain 
its weight to equal the sum of the liquid assets.

11This difference is equivalent to the difference in value 
between a portfolio of options and an option on a portfolio.

12 To compute sub-optimality cost we assume the initial 
portfolio weights are optimal. But accounting for this cost 
renders the initial weights sub-optimal. We therefore need to 
recalculate it iteratively to arrive at a more precise estimate.

13We assume a 10% probability the investor will need 
to raise cash to meet capital calls in a given month. When 
a call arises, there is a 70% chance its size is equal to 1% of 
the starting portfolio value, a 20% chance its size is 2% of the 
starting portfolio value, and a 10% chance its size is 3% of the 
starting portfolio value.

14For reasonable assumptions about the size and likeli-
hood of capital calls, the sub-optimality caused by capital calls 
tends to be much smaller than the sub-optimality caused by 
drifting asset prices.

15The borrowing cost we estimate in the simulation 
assumes the asset allocation shown in Exhibit 4; therefore, we 
express this cost as a percentage of the allocation to illiquid 
assets.

16In this example, we have in mind median performing 
hedge fund and private equity managers. We understand that 
managers who choose to read our article are relatively sophisti-
cated and would most likely perform in the top quartile or better. 
Hence, we are willing to acknowledge that their existing alloca-
tions could be optimal, even taking liquidity into account.
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