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Event Time
Megan Czasonis, Mark Kritzman, and David Turkington

KEY FINDINGS

n This article proposes that it is more informative to measure investment returns in units
of common event intensity than in common time units.

n When returns are measured in event time as opposed to calendar time, they are better
described by a normal distribution. In addition, the co-occurrence of returns is more
stable in event time than calendar time, meaning that event-time correlations are more
reliable than calendar-time correlations.

n By measuring returns in event time, investors can better assess the likelihood of shocks,
the skill of investment managers, and the resilience of portfolios to adverse outcomes.

ABSTRACT

Investors take for granted that returns are recorded in units of time, such as days, months, 
and years. Yet some time periods include unusual events that reasonably cause asset 
prices to change, whereas other periods are relatively free of unusual events, in which case 
returns mostly reflect noise. Based on insights from information theory, the authors rescale 
time into event units so that each return is related to a common degree of event intensity. 
Their analysis reveals that when returns are measured in event units, their distributions are 
more normal and their co-occurrences are more stable, which enables analysts to form 
more reliable inferences. 

We measure time as a function of how long it takes the earth to rotate on its 
axis and to travel around the sun. Then we use this system of measurement 
to record outcomes, which in some cases makes sense and in others does 

not. It seems reasonable, for example, to measure speed in units of time, such as 
how many seconds it takes a sprinter to run 100 meters. But does it make sense to 
measure how many points an NBA basketball player scores in a week? Not neces-
sarily. If the week is in August, when no games are played, it makes no sense. Even 
if the week is in February, we would still want to standardize our measurement to 
account for the number of games the player participated in that week. It therefore 
makes sense to substitute events for time when recording certain outcomes.

This consideration invites the question of how we should record asset returns. 
What is the significance of the circumnavigation of the earth around the sun to an 
investment strategy? Why, then, do we focus so much on returns that are recorded 
in multiples or fractions of years? Implicitly, we assume that common units of time 
include the same frequency and intensity of relevant events. This assumption might 
make sense for multiyear periods because of the law of large numbers, but it is less 
likely to hold for shorter periods such as days, months, and quarters. We propose 
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that it might be more insightful to record asset returns in units of event intensity, in 
which event intensity refers to a common degree of the frequency and significance 
of relevant events. 

We proceed as follows. We first review a key insight of Claude Shannon, the father 
of information theory, to show how information relates to the probability of events. 
We then describe how we measure event intensity. Next, we show how the conver-
sion from calendar time to event time leads to more normally distributed returns and 
more stable co-occurrences. We then discuss the implications of measuring returns 
in event time rather than calendar time on stress testing, performance evaluation, 
and portfolio construction.

INFORMATION AND THE PROBABILITY OF EVENTS

In 1948, while working in the mathematics department at Bell Labs, Claude 
Shannon published one of the most important scientific papers, “A Mathematical 
Theory of Communication,” which is universally acknowledged as the founding of 
information theory (Shannon 1948). Shannon deduced from basic principles that 
information is inversely related to probability, which is to say that unusual events 
contain more information than common events.

To explain Shannon’s insight, we begin by noting that the probability of an event 
equals the number of ways the event can occur divided by the total number of pos-
sibilities for all events. Shannon showed that we gain information when the proba-
bility of an event shrinks and we lose information when the probability expands. We 
therefore know more about events that have only a few ways of occurring than we do 
about events that have many ways of occurring. This inverse relationship between 
information and possibility sits at the core of Shannon’s information theory. 

Consider, for example, the sum of a random sequence of the numbers 1 through 
10. It would be extremely unusual for the sum to equal 100, because of the 10 billion
possible sequences there is only one way for the numbers to sum to 100. Therefore,
we know everything there is to know about this sequence if its sum is 100. Now
suppose the sum equals 99. This outcome also is unlikely but not nearly as unlikely
as 100. There are 10 ways the sum could equal 99. We would still know quite a bit
about the sequence—that at least one number in the sequence is 9 and the others
are 10—but we would not know where the 9 is in the sequence of 10 numbers. We
therefore lose one piece of information. Now consider a sum of 98. To get 98, we
need one number to be 8 or two numbers to be 9. There are 10 ways for a number
to be 9, and for each of those we have nine ways for another number to be 9. Half of
these 90 combinations are redundant, however, so we are left with 45 possibilities.
Add to this outcome 10 ways for one number to be 8. In total, there are 55 ways to
arrive at a sum of 98. Compared with the sum of 99, we now have one less piece
of information because we know that two of the numbers (or one of the numbers,
twice) must be incrementally lower than 10, but we do not know which numbers in
the sequence are the lower numbers. The bottom line is that probabilities multiply,
and information adds; they are intimately connected. The lower the probability of an
event, the more information it conveys.

In light of Shannon’s insight that unusual events are more informative than com-
mon events, we explore some implications of recording asset returns against a chosen 
quantity of event intensity, which we measure as cumulative unusualness as opposed 
to a chosen quantity of time. Exhibit 1 offers an impressionistic visualization of how 
we rescale calendar time to event time.

The top panel of Exhibit 1 plots the degree of event intensity over eight equal 
intervals of time. The bottom panel shows the length of time required to reach equal 
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levels of event intensity. In this illustration, we suppose that event intensity requires 
a threshold of 4. To begin, it takes three periods to reach our threshold for event 
intensity. Then event intensity occurs after just a single period, and then four periods 
must pass to again reach the threshold of event intensity. Our proposal is to record 
returns across equal units of event intensity instead of equal units of time and to 
conduct investment research in units of event intensity. We next describe how to 
measure event intensity with empirical precision.

Event Intensity

Seemingly, the most natural approach for measuring event intensity would be to 
monitor the news, record the number and significance of events given some quanti-
fication scheme, and carve up history into event units. However, not only would this 
approach be unduly laborious, it also would depend on subjective interpretation with 
significant potential for bias. Moreover, this approach might overlook non-newsworthy 
events that nonetheless would be relevant within a particular context. Therefore, we 
resort to a statistical measure of event intensity based on the Mahalanobis distance.

The Mahalanobis distance. The Mahalanobis distance was introduced originally 
in 1927 and modified in 1936 by an Indian statistician to analyze resemblances in 
human skulls among people with mixed British and Indian parentage (Mahalanobis 
1927, 1936). Mahalanobis compared a set of measurements for a chosen skull to 

EXHIBIT 1
Calendar Time versus Event Time
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the average of those measurements across skulls within a given group. He also 
compared the co-occurrence of those measurements for a chosen skull to their 
covariation within the group. He summarized these comparisons in a single number 
that he used to place a given skull in one group versus another group. 

The Mahalanobis distance has since been applied across many different fields, 
including medicine (Su and Li 2002; Wang et al. 2011; Nasief et al. 2019), engineering 
(Lin, Khalastchi, and Kaminka 2010), and finance (Chow et al. 1999; Czasonis et al. 
2020; Czasonis, Kritzman, and Turkington 2020; Czasonis, Kritzman, and Turkington 
2021; Kinlaw, Kritzman, and Turkington 2021). 

Perhaps the application that is most relevant to our current proposal to record 
returns in event time is Chow et al. (1999). They compared a set of asset class 
returns for a given time interval to their averages and covariances over a prior his-
tory to measure the statistical unusualness of that set of returns as an indication 
of financial turbulence. They reasoned that the more unusual the returns the more 
likely it was that they were driven by disruptive events instead of noise and that they 
were therefore more characteristic of financial turbulence. However, they stopped 
short of converting calendar time into event time or explicitly relating unusualness 
to informativeness. 

The Mahalanobis distance, as we apply it to measure event intensity, is given in 
Equation 1. 

( ) ( )1= − µ Ω − µ ′−d x x (1)

In Equation 1, d equals the Mahalanobis distance, x equals a row vector of val-
ues for a set of variables used to characterize a given period, m equals the average 
values of the variables measured over a prior window of time, Ω-1 equals the inverse 
of the covariance matrix of the variables over the prior window, and ′ denotes matrix 
transpose. The term (x - m) captures how similar each variable, by itself, is to the 
average values. By multiplying (x - m) by the inverse of the covariance matrix, the for-
mula captures how similar the co-occurrence of the variables is to their co-occurrence 
over the prior window. This multiplication also converts the variables into common 
units. This feature is very handy because some of the variables might be measured 
as percentage changes whereas others might be measured as levels.

Exhibit 2 helps us to visualize the Mahalanobis 
distance.

In Exhibit 2 each dot represents the joint values 
of two variables for a given observation. The center of 
the ellipse represents the average values of the two 
variables. The observations within the ellipse repre-
sent reasonably common combinations because the 
observations are not particularly distant from the aver-
age values. The observations outside the ellipse are 
statistically unusual and therefore likely to be driven 
by events. In addition, according to information theory, 
they are also more informative.

Note that observations just outside the narrow 
part of the ellipse are closer to the ellipse’s center 
than some observations within the ellipse at either 
end. This illustrates the notion that some observa-
tions qualify as unusual not because one or more of 
the values is unusually distant from the average value 
(in Euclidean units) but instead because the values 

EXHIBIT 2
Scatter Plot of Two Hypothetical Variables
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have opposite signs relative to the average even though these two variables are 
positively correlated, as evidenced by the positive slope of the scatter plot. Unusu-
alness as measured by the Mahalanobis distance provides a proper measure of 
multivariate informativeness. 

This description of the Mahalanobis distance assumes that we fix the time interval 
of the observations to yield various distances. To convert calendar time to event time, 
we instead fix a threshold for the Mahalanobis distance and compute the Mahalanobis 
distance for small successive intervals of time until the sum of the Mahalanobis dis-
tances computed over these small intervals reaches our threshold for event intensity, 
at which point we record one unit of event time. We then proceed from the end of the 
first event period and compute the Mahalanobis distance of the variables over new 
successive intervals until we again reach the event intensity threshold. We proceed 
through time until we have accounted for all the small intervals in our sample. 

Exhibit 3 helps us to visualize this process.
The dashed line at the center of Exhibit 3 represents 20 short calendar inter-

vals. For each calendar interval, we calculate the Mahalanobis distance. Then we 
sum these distances until the sum equals our threshold for event intensity. Initially 
three calendar intervals are required to reach our event intensity threshold, then two 
periods, then only one period, and so on. Although there are 20 calendar periods, 
there are only 10 event periods.

One might consider computing the Mahalanobis distance over an expanding 
window until it reaches the event intensity threshold, but this approach could yield 
a misleading result. For example, some of the asset returns in the first period might 
be significantly above average or they may have co-moved in a way that is contrary 
to their historical pattern, but not so much to reach the event intensity threshold. 
Then, in the next calendar interval, they might have reversed their pattern such that 
cumulatively over the two periods it would appear that there were no significant 
events. By computing the Mahalanobis distance repeatedly over each small calendar 
interval, we capture offsetting events that are obscured when they are averaged over 
longer intervals.

Implementation issues. Thus far we have noted that unusualness corresponds to 
event intensity, and event intensity corresponds to informativeness. In addition, we 
showed how to measure event intensity mathematically. We have not yet addressed 
an important implementation issue, however, which is the choice of variables used to 
indicate event intensity. These variables will differ depending on the context in which 
we measure event intensity. Suppose, for example, we wish to analyze the US equity 
market. We might measure event intensity based on the returns of sectors within the 
US equity market or the returns of asset classes that make up a typical multi-asset 

EXHIBIT 3
Conversion of Calendar Time to Event Time
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portfolio. We may even include economic variables that are believed to affect equity 
prices. If, instead, our goal is to analyze currencies, it would make more sense to 
determine event intensity from currency returns and, perhaps, interest rates across 
various countries. The choice of variables is not ordained theoretically. Instead, we 
must rely on empirical analysis, experience, and judgment.

Implementation also requires us to select a threshold for delineating event inten-
sity. This choice as well requires analysis and judgment. The units of the Mahalanobis 
distance tell us nothing in an absolute sense. It therefore might be helpful to convert 
the Mahalanobis distance into a measure of likelihood, as shown in Equation 2.

/2likelihood e d∝ − (2)

In Equation 2, d equals the Mahalanobis distance, e is the base of the exponential 
function, and ∝ denotes a proportionality relationship.

This conversion allows us to select a threshold based directly on the likelihood 
of occurrence, in line with the precepts of information theory. It does not, however, 
obviate the need for analysis and judgment. 

We next discuss the implications of event time analysis on statistical inference.

Implications for Statistical Inference

Statistical inference is more reliable to the extent that the return samples upon 
which it is based are well behaved. We first consider this issue from a univariate 
perspective. We follow this analysis with a novel approach for measuring the bivariate 
stability of return samples.

Univariate perspective. The inferences we draw from financial analysis almost 
always assume, at least as a first approximation, that asset returns expressed in 
continuous units are normally distributed. This assumption is baked into the Black–
Scholes–Merton option pricing formula, determines the confidence we attach to 
investment strategies, and influences how investors contrive stress scenarios, to 
name but a few dependencies. It therefore seems appropriate to consider whether 
the assumption of normality is a better description of returns measured in calendar 
time or event time. If event returns are distributed more normally than calendar 
returns, then in some applications it may make more sense to base our inferences 
on event time. 

We measure daily event intensity based on the returns of 11 US equity sectors1 
and their full sample means and covariances over the period of March 1, 1994, 
through November 30, 2021. We define overlapping event periods using an event 
intensity threshold of 20. Calendar time, therefore, converges to an event unit when 
the cumulative Mahalanobis distance of daily returns reaches 20. We identify over-
lapping event periods by rolling the event intensity threshold forward each day, which 
is analogous to rolling forward a fixed calendar window. However, in the case of event 
periods, the number of days in the rolling window varies based on cumulative event 
intensity. We focus on overlapping rather than distinct event periods so that our 
analysis is not sensitive to the start date. Empirically, 33 is the average number of 
days for an event unit, although individual event units will almost always correspond 
to fewer or greater daily units just as daily calendar returns almost always differ from 
their average.

1 Specifically, we use the Ken French 12 industry portfolios and exclude the industry labeled Other. 
We obtained these data from the Ken French online data library.
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We measure asset class returns over these rolling event periods and rolling 
33-day calendar windows to match the average number of days per event period.
Specifically, we consider the following asset classes2:

§	US Equities: Ken French US Market
§	US Treasury Bonds: Bloomberg Barclays US Treasury Aggregate Index
§	US Corporate Bonds: Bloomberg Barclays US Corporate Investment Grade

Index
§	Commodities: GSCI Commodities Total Return Index
§	Multi-asset Portfolio: 60% US Equities, 30% US Aggregate Bonds (Bloomberg

Barclays US Aggregate Bond Index), 10% Commodities

The first two panels of Exhibit 4 show the skewness and kurtosis of asset class 
returns measured in calendar time and event time. The right panel summarizes the 
divergence of each empirical distribution from a normal distribution with the same 
mean and standard deviation. We measure normal divergence using Kullback–Leibler 
divergence (Kullback and Leibler 1951), also called relative entropy, which measures 
how one probability distribution, Q, differs from a reference probability distribution, 
P. Typically, Q corresponds to a theoretical distribution and P to a measured distri-
bution. Relative entropy is always non-negative, and zero indicates that the two dis-
tributions contain the same quantities of information. Relative entropy greater than
zero indicates a loss of information from using Q to model the true distribution, P.

For discrete probability distributions, the relative entropy from Q to P over a set 
X is defined as

 ∑ ( )
( )

=




∈

( )   ( )D P Q P x log
P x
Q xKL

x X

(3)

For our purposes, we define P as the empirical distribution of calendar or event 
returns for a given asset class and Q as a normal distribution with the same mean 
and standard deviation.3 We interpret Kullback–Leibler divergence as an indication 
of whether a normal distribution reasonably approximates the empirical return distri-
bution. The greater the divergence, the less normal the empirical distribution.

2 We obtained the US market from the Ken French online data library and all other series from 
Thomson Reuters Datastream.

3 Specifically, we partition each empirical distribution into 50 equal-sized bins, X, that cover the full 
range of observed values and measure the frequency of observations that fall within each, P(x). Then, 
we estimate the normal frequency of occurrence for each bin, Q(x), as the difference in the cumulative 
distribution function at the bin’s maximum and minimum values for a normal distribution with the 
same mean and standard deviation. If the empirical frequency of a bin equals zero, P(x) = 0, we set its 
corresponding term in Equation 3 to zero.

EXHIBIT 4
Normality of Asset Class Returns in Calendar Time and Event Time

US Equities
US Treasury Bonds
US Corporate Bonds
Commodities
Multi-Asset Portfolio

Calendar

−0.9
0.2

−0.9
−0.8
−1.3

Event

−0.4
−0.1
−0.1
−0.2
−0.4

Calendar

6.8
4.5
9.6
5.2
8.6

Event

3.4
3.9
3.8
3.1
3.5

Calendar

0.09
0.02
0.09
0.06
0.11

Event

0.02
0.02
0.02
0.01
0.02

Skewness Kurtosis Normal Divergence
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Exhibit 4 starkly reveals that event returns, in which event intensity is estimated 
from sector returns, are distributed more normally than calendar returns, on balance. 
Exhibit 5 offers visual support of this observation using the multi-asset portfolio as 
an example. We plot the left tail of calendar returns in Panel A and event returns 
in Panel B along with the left tail of the normal distribution.4 We focus on the left 
tail to help visualize the differences in negative skewness and fat tails (kurtosis) for 
calendar and event returns.

Bivariate perspective. So far, we have provided persuasive evidence that the 
returns of major asset classes are much better approximated by a normal distribution 
when they are measured in event units as opposed to calendar units. Next, we show 
that the co-movement of asset class returns is more stable when their returns are 
measured in event units rather than calendar units.

Czasonis, Kritzman, and Turkington (2022) introduced a measure of co-occurrence 
that represents the co-movement of the cumulative returns of two assets over a single 
period as a number ranging from -1 to +1:

=

− µ
σ







− µ
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(4)

Here, rx and ry equal the cumulative return of two assets, x and y, over a given 
period; mx and my equal their long-run arithmetic average return with the same peri-
odicity; and σx and σy equal the standard deviation of their returns with the same 
periodicity.

Co-occurrence relates to the Pearson correlation of a time series of asset returns 
in a precise mathematical way:

∑ρ =
−

×
=

( , )  
1

1
( )

1

x y
N

info c
t

N

t t (5)

4 To facilitate visual comparison, we shift and rescale the distribution of event returns to match the 
mean and standard deviation of calendar returns. This preserves the shape of the event distribution 
while allowing for proper comparison with the calendar distribution. We define the 5% left tail according 
to a normal distribution with the same mean and standard deviation.

EXHIBIT 5
Fifth Percentile Left Tail of Calendar Return and Event Return Distributions: Multi-asset Portfolio
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Here, N equals the number of return periods in the sample; infot is the informa-
tiveness of the asset returns ending at time t; and ct is their co-occurrence ending 
at time t. In this context, informativeness is defined as the assets’ average squared 
Z-score for the chosen period.

If we rewrite infot as the assets’ average squared Z-score and substitute Equation 4 
for ct, then

∑ρ =
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(6)

This equation simplifies to the assets’ full-sample covariance divided by the prod-
uct of their standard deviations, the formula commonly used to measure time-series 
correlation:
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This equivalence reveals that we can interpret the Pearson correlation as a 
weighted average of individual co-occurrences. Just as any single return is likely to 
deviate from its average, so, too, will individual co-occurrences deviate from their 
average, or Pearson correlation. It is useful to measure the typical dispersion of 
co-occurrences around their means to understand how they may vary from one period 
to another. To measure the dispersion of co-occurrences for a pair of assets, we 
estimate the standard deviation of their informativeness-weighted co-occurrences, 
which are the elements whose average yields the correlation:
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× −
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For our purposes, we are interested in whether co-occurrences measured over 
event periods are more stable, or less dispersed, than those measured over calen-
dar periods. Based on rolling event and calendar returns from the previous section, 
Exhibit 6 reports the dispersion of co-occurrences for each pair of assets. Though 
individual co-occurrences as defined in Equation 4 are bound between -1 and 1, it is 
possible for their dispersion, as defined in Equation 8, to extend beyond this range. 
Mathematically, this results from multiplying the individual co-occurrences by their 
informativeness before estimating their standard deviation. 

Exhibit 6 reveals that the dispersion of co-occurrence is uniformly lower across 
asset class pairs when their returns are measured in event time as opposed to cal-
endar time, which means that correlations measured in event time are more reliable 
than correlations measured in calendar time. 

Now that we have shown that return samples are more normally distributed and 
their co-occurrences are more stable when measured in event time instead of calen-
dar time, we next discuss three practical implications of our analysis: stress testing, 
performance evaluation, and portfolio construction.
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Practical Implications 

Stress testing. To evaluate the implications of our analysis on stress testing, we 
reconsider the unusualness of several stock market crashes from the perspective 
of both calendar time and event time. As before, we use the daily returns of 11 US 
sectors to determine event intensity. However, for this application, we extend our data 
to begin in July 1926. This provides a large sample for estimating historical calendar 
and event returns to contextualize stock market crashes. Moreover, at each point, 
we measure daily event intensity based on means and covariances estimated over a 
10-year (2,520-day) lookback window. We use a trailing window, rather than the full
sample, to avoid event concentration, which might occur if we based event intensity
on full sample means and covariances measured over such a long sample.

Exhibit 7 measures the unusualness of five stock market crashes based on both cal-
endar time and event time: the 1987 crash, the Long-Term Capital Management (LTCM) 
crash, the Dotcom Bubble, the Global Financial Crisis (GFC), and the COVID-19 crash. 
For each drawdown, we quantify its unusualness as Z-scores based on a distribution 
composed of (1) historical returns measured over the same calendar horizon and (2) 
historical returns measured over event periods with the same cumulative event intensity. 

Exhibit 7 clearly shows that the calendar time distribution drastically overstates 
the rarity of these crashes. For example, the recent COVID-19 crash based on calendar 
time is more than seven standard deviations away from the average return of similar 
length periods, which means it is deemed to have had only a 1 in 10 trillion chance 
of occurrence. By contrast, the same COVID-19 crash event appears to have been 
much more plausible when compared with prior periods of similar event intensity: it 
is 2.3 standard deviations away from average, which implies that it is a little more 
likely than a 1 in 100 chance.

These stark differences in perceived unusualness based on calendar time and 
event time have significant implications for stress testing a strategy or an institution’s 
resilience to negative shocks. Specifically, these results suggest that severe shocks 
are far more plausible than calendar-time measures of unusualness would suggest, 
thereby suggesting that survival may require a more conservative approach to risk 
taking than commonly assumed. 

Performance evaluation. Investors typically evaluate the investment performance of 
a manager or a strategy based on a fixed amount of elapsed time, such as a quarter or 

EXHIBIT 6
Dispersion of Co-Occurrences for Asset Class Returns in Calendar Time and Event Time
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a year. Yet, as we have shown, common units of elapsed time likely will have much dif-
ferent degrees of event intensity. A quarter with one unit of event intensity reveals much 
less about the quality of a manager or a strategy than a quarter with 10 units of event 
intensity. It therefore stands to reason that decisions to fund or defund managers or 
strategies should be based on returns measured in event time rather than calendar time.

Portfolio construction. To the extent that estimates of volatility and correlation 
are more stable when measured in units of event time, it may be advantageous to 
use these estimates as the inputs to mean–variance analysis or other portfolio 
construction techniques. The resulting portfolios will be designed to withstand event 
risk regardless of the length of elapsed time it takes for these events to materialize. 

CONCLUSION

We argued that it is more informative to measure investment returns in units of 
common event intensity instead of units of common elapsed time. We grounded our 
argument in information theory, which implies that the amount of information revealed 
by a sequence of returns increases with the degree of event intensity associated with 
those returns. We then showed how we can measure event intensity with a statistic 
called the Mahalanobis distance, which gives a multivariate indication of the unusu-
alness of a set of variables. 

We presented a comparative analysis of the statistical properties of asset class 
returns based on calendar time and event time. We showed that when returns are 
measured in event time as opposed to calendar time, they are better described by a 
normal distribution. We also showed that the co-occurrence of returns is more sta-
ble in event time than calendar time, meaning that event-time correlations are more 
reliable than calendar-time correlations. This latter result is particularly relevant to 
portfolio construction.

Finally, we discussed three practical implications of our analysis. We re-estimated 
the unusualness of several stock market crashes, revealing that their occurrences 
were much more plausible from the perspective of event time than calendar time. 
This result suggests that negative shocks are substantially more likely than one 
might assume from a calendar time perspective; thus, survival may require a more 
conservative approach to risk taking than what is assumed by common approaches 
to stress testing. We also argued that, to receive the same level of information 
across evaluation units, investors should evaluate investment managers and strate-
gies based on a common degree of event intensity rather than a common amount of 
elapsed time. Third, we argued that constructing portfolios from inputs measured in 
units of event time may render those portfolios more resilient to adverse scenarios 
that occur over different spans of time. 

EXHIBIT 7
Market Crash Z-Scores Measured in Calendar Time and Event Time

Start Date (Peak)
End Date (Trough)
Drawdown

Calendar Horizon (Days)
Drawdown Z-score

Event Intensity
Drawdown Z-score

8/25/1987
12/4/1987

–33%

72
–4.27

261
–2.02

1987

7/17/1998
10/8/1998

–22%

59
–3.28

202
–1.75

LTCM

3/24/2000
10/9/2002

–50%

638
–2.89

1486
–2.45

Dotcom

10/9/2007
3/9/2009

–55%

356
–3.38

680
–2.59

GFC

2/19/2020
3/23/2020

–34%

24
–7.35

225
–2.32

Covid
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