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Facts about Factors
Paula CoComa, megan Czasonis, mark kritzman,  
and david turkington

It is becoming increasingly common for 
investors to stratify portfolios into fac-
tors rather than assets. This approach 
may be advantageous for a variety of 

reasons. For example, certain factor struc-
tures may offer risk premiums or even alphas 
that are not otherwise available from con-
ventional asset structures. Or investors may 
discover unwanted risk exposures by decom-
posing a portfolio into factors. Or factor 
stratification may help to explain a portfolio’s 
performance. We acknowledge these impor-
tant benefits to factor stratification, but our 
focus in this article is to evaluate the use 
of factors as building blocks for forming 
portfolios.

We argue that the motivation for allo-
cating portfolios to factors rather than assets 
is often misguided. For example, some claim 
that factors are less correlated with each other 
than are assets; hence, they enable investors 
to achieve greater diversif ication. It is also 
argued that reducing the dimensionality of a 
large set of assets into a smaller set of factors 
reduces noise. And some believe that investors 
may be able to predict factor behavior more 
dependably than asset behavior. Finally, 
some argue that the risk properties of factors 
are more stable than the risk properties of 
assets. We address each of these assertions and 
conclude that investors should not replace 
assets with factors as the building blocks for 
forming portfolios.

We il lustrate our arguments with 
factors that are fixed-weight linear combi-
nations of underlying assets. Although many 
investors define factors this way and stratify 
their portfolios accordingly, we acknowl-
edge that there are a variety of ways to 
define factors, including proprietary repli-
cation methods that may depend on dynamic 
rebalancing. We cannot address factors that 
depend on proprietary replication processes, 
but we see no reason why our general con-
clusions would not apply to these factor 
descriptions as well.

THE DIVERSIFICATION BENEFITS 
OF FACTORS—OR NOT

Some investors believe that factors 
offer superior diversification benefits relative 
to assets because factors are less correlated 
with each other. The argument that factors 
can offer superior diversification is specious 
if the factors represent regroupings of the 
assets, even if these regroupings are less cor-
related with each other than the component 
assets.1 The factors would be less correlated 
only because they would include some short 
exposures to the assets. Assets will always 
deliver the same degree of efficiency as fac-
tors given three conditions: (1) assets define 
the opportunity set, (2) both sets of frontiers 
are subject to the same constraints, and (3) 
the results are shown in the same return units 
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as the inputs. This equality can be proven mathemati-
cally, as in Idzorek and Kowara [2013]. 

We understand that after careful consideration, 
most people will agree with this conclusion. However, 
given the amount of confusion around this subject, 
it may also be helpful to look at a simple empirical 
example. Although this equality applies to any collection 
of factors—including fundamental factors (such as inf la-
tion and GDP) and attributes (such as value, size, and 
momentum)—it is convenient to illustrate it for principal 
components because principal component factor portfo-
lios are uncorrelated by construction and they span the 
same opportunity set as the underlying assets.2 Exhibit 1 
shows that efficient frontiers with and without leverage 
are identical regardless of whether they are formed from 
principal components or from the underlying assets that 
produced the principal components.3

NOISE REDUCTION

Some proponents of factor stratification argue that 
consolidating a larger set of assets into a smaller set of 
factors reduces noise. This is only partly true, and even 
so, it may or may not be a good outcome. We know, 
a priori, that more granularity produces better results 
in sample than less granularity to the extent that the 
additional assets or factors are not purely redundant. 
This result occurs because greater granularity provides 
additional information. When we move out of sample, 
however, the more granular information may degrade 
more severely than the composite information if it is 
less stationary. We thus face the following trade-off: 
Should we take a more granular approach to portfolio 
construction in order to capture additional information, 
noisy though it may be, or should we approach portfolio 
construction in a more consolidated way, thereby sacri-
ficing information in favor of noise reduction?

Suppose our focus is to reduce out-of-sample noise. 
Is it really true that coarser data is less noisy? It is true for 
returns but not for covariances. We know that returns 
for consolidated groups of assets will be less noisy than 
the returns of the underlying assets because of diversi-
fication. But the effect of diversification should apply 
equally to asset classes and factors.

We have already shown that eff icient frontiers 
composed of factors are identical to efficient frontiers 
composed of assets. It follows, therefore, that we cannot 
achieve greater reduction in dispersion around means 
by using factor groupings rather than asset groupings. 
Consider principal components as an example. The full 
set of principal component eigenvectors spans the full 
opportunity set of the assets, and the sum of principal 
component variances will always equal the sum of asset 
variances. Therefore, the amount of noise in returns 
around their means is the same in both cases. If we 
were to reduce dimensionality by retaining only the top 
few eigenvectors, we would be guaranteed to increase 
noise in returns because the top eigenvectors are the least 
stable by construction (they have the largest variance). 

Although diversification reduces noise in returns 
around their means, it does not necessarily reduce noise 
in covariances. At the portfolio level, the only source 
of risk instability is the noise in the portfolio’s vari-
ance. Just as factors cannot yield more efficient portfolios 
than assets in sample, they also cannot yield portfo-
lios with less noise in variances because assets define 

e X H i B i t  1
Efficient Frontiers of Factors and Assets

Notes: This analysis incorporates the following asset classes: U.S. large 
cap, U.S. small cap, EAFE equities, emerging equities, U.S. government 
bonds, U.S. corporate bonds, commodities, and hedge funds. It is based on 
monthly returns over the period January 1990 through December 2015. 
Excess returns represent the return over the risk-free rate. It is important 
to note that there are indeed eight distinct principal component factors 
represented in this exhibit. Two of them have very similar volatility and 
excess return: (2.73%, 1.40%) and (2.75%, 1.42%).
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the opportunity set. It is possible that different portfolios 
on the efficient frontier have different levels of noise in 
their variances. However, for an investor who seeks to 
maximize expected utility, there is no reason to believe 
that optimal portfolios will be biased toward assets with 
either more noise or less noise in covariances. 

For a universe of assets or factors, risk instability 
pertains to the entire covariance matrix. If asset returns 
are normally distributed and serially independent, we 
should not expect the average noise in covariances across 
a consolidated group of assets or factors to be less than 
the average noise in covariances across the individual 
assets that form those groups. In fact, if correlations are 
closer to zero as a result of grouping, we would actually 
expect the noise in covariances to increase because cor-
relations closer to zero are inherently less stable.4

For assets with non-normal distributions or serial 
dependence, different methods of grouping may result 
in different levels of noise. We see no clear reason to 
expect that factor groupings would consistently result in 
less noise than asset class groupings, but we can test this 
hypothesis empirically. In the data sets we test, we find 
no evidence that factor groupings reduce noise more 
effectively than asset class groupings. In fact, we find the 
opposite, as we will show in the results section later on. 

PREDICTIVE SKILL

Some investors may have particular skill in pre-
dicting factors as opposed to predicting assets. It is also 
possible that many investors have more skill in pre-
dicting assets than factors. We cannot test this conjecture 
generically because it depends on individual investor 
skill. It is important to note, however, that investors who 
choose to predict factor performance face two additional 
hurdles that do not apply to assets. First, factors are not 
directly investable. Investors must identify a collection of 
assets that mimic the movement of factor values, which 
they typically do by regression analysis. However, the 
coefficients derived from historical data will differ from 
those that yield the best fit in the future. The differ-
ence in past and future coeff icients is called mapping 
error. Second, even if the true asset-to-factor mappings 
were known in advance, investors would need to trade 
periodically to rebalance the factor portfolios, which 
would increase transaction costs. Both of these realities 
erode the value that can be achieved through superior 
factor prediction.

SOURCES OF INSTABILITY

Investors often rely on long samples of historical 
data to forecast covariances over shorter future periods 
such as a few years.5 These forecasts are subject to four 
distinct types of error that contribute to instability. First, 
small-sample error arises when return and risk parameters 
from a long sample are used to forecast the outcome of 
a specific smaller sample. Even though the true param-
eter of a long sample is known, the realization of that 
parameter in a shorter subsample may be meaningfully 
different. Second, independent-sample error arises when 
known parameters from one sample are projected onto a 
separate independent sample. Third, investors also face 
mapping error when they use factors to build portfo-
lios, because they must translate these factor values into 
mimicking combinations of assets. Fourth, interval error 
arises when the covariances of high-frequency returns, 
such as monthly returns, differ from the covariances of 
longer-period returns, such as three-year returns. We 
next describe how we measure each of these distinct 
sources of error, which are pictured in Exhibit 2.6

Small-Sample Error

Investors typically construct portfolios based on 
inputs estimated from a history of returns that is longer 
than their investment horizon. They are thus subject to 
small-sample error. 

To isolate small-sample error, we f irst estimate 
the covariances of two assets, A and B, from our full 
sample of monthly data.7 Covariances are in squared 
units, which exaggerate outliers in error computations. 
To mitigate this outlier problem, we take the square 
root of the standard deviation product in covariances. 
We retain the correlation of the two assets and multiply 
it by the product of the square root of their standard 
deviations. We modify covariance estimates in this way 
across all our measures of error. 

Next, we reestimate the parameter from all overlap-
ping 36-month realization subsamples within our data 
sample, which we denote using a subscript for each sub-
sample j.8 These subsamples are not independent of the full 
sample; hence, we are isolating the small-sample effect. 
For each realization subsample, we compute the difference 
between the modified covariances and the full-sample-
modified covariances, and we divide by the square root of 
the product of both assets’ full-sample standard deviations 

It 
is

 il
le

ga
l t

o 
m

ak
e 

un
au

th
or

iz
ed

 c
op

ie
s 

of
 th

is
 a

rti
cl

e,
 fo

rw
ar

d 
to

 a
n 

un
au

th
or

iz
ed

 u
se

r, 
or

 to
 p

os
t e

le
ct

ro
ni

ca
lly

 w
ith

ou
t P

ub
lis

he
r p

er
m

is
si

on
.



4   faCTS aBouT faCTorS SPeCial iSSue 2017

to normalize this quantity. We then compute the root-
mean-squared error of these individual normalized errors, 
which we define as small-sample error. Note that when 
assets A and B are the same, this formula pertains to the 
standard deviation of a single asset, rather than to the 
relationship between two assets: 
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(1)

Independent-Sample Error

Investors also face independent-sample error 
because they project historical estimates of covariances 
onto a future period that is independent of the historical 
sample. We capture this error by first estimating statistics 
from all possible overlapping estimation subsamples of 
36 months within our data sample, which we denote 
using the subscript m jm̂ jm̂ j, .m j, .m j  Next, we reestimate the same 

statistics from all independent realization samples of 
36 months, each of which immediately follows one of 
the 36-month estimation subsamples and is denoted by 
the subscript m, j.

For each estimation and realization subsample 
pair, we compute the difference between the estima-
tion sample statistic and the realization sample statistic, 
and normalize it by dividing by the square root of the 
full-sample product of the assets’ standard deviations, 
as we did for small-sample error. We then compute the 
root-mean-squared error across all samples. Because 
both the estimation samples and the realization samples 
are subject to small-sample error, we subtract the pre-
viously estimated small-sample error in order to isolate 
the incremental impact of independent-sample error:
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(2)

e X H i B i t  2
Visualization of Sources of Estimation Error
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Mapping Error

Assets define the opportunity set for investing. 
A desired factor exposure must be mapped onto a port-
folio of assets to be investable. The mapping that best 
tracks a factor in the future will likely differ from the 
mapping estimated from an independent historical 
sample. We call this mapping error, and it applies only 
to factors.9

The calculations we have just shown for small-
sample error and independent-sample error do not 
incorporate mapping error. We isolate mapping error 
by comparing the covariances of factor-mimicking 
portfolios whose weights are optimized for the realiza-
tion sample to those whose weights are optimized on an 
independent prior sample, holding the covariance evalu-
ation period constant. Specifically, for each 36-month 
estimation subsample, we estimate factor-mimicking 
portfolios based on the data from that subsample, and 
we compute the realized covariances of those portfolios 
over the subsequent 36-month realization subsample. 
We denote these covariances using the subscripts A m jˆ
over the subsequent 36-month realization subsample. 

ˆ
over the subsequent 36-month realization subsample. 

, ,A m, ,A m  
and B m jˆ
We denote these covariances using the subscripts 

ˆ
We denote these covariances using the subscripts 

, ,B m, ,B m . We then subtract these covariances from 
the realized covariances of factor-mimicking portfo-
lios whose weights are derived from the same realiza-
tion subsample on which they are evaluated, which we 
denote using the subscripts A m j B m j, , and , , .

The way in which factor-mimicking portfolios are 
obtained may differ across analyses, depending on the 
type of data and investment universe we consider. For 
broad asset allocation, we apply regression or principal 
components analysis on each subsample. For grouping 
individual securities, we use security attributes observed 
in each subsample. 
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A m, ,A m, , j B m, ,B m, , j
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 (3)

Interval Error

Investors typically estimate covariances from 
monthly or higher-frequency returns when determining 
the optimal composition of a portfolio intended to be 
held for horizons as long as several years. This practice 

implicitly assumes that the covariances estimated from 
monthly returns pertain as well to longer periodicities. 
Specif ically, it assumes that standard deviations scale 
with the square root of time and correlations estimated 
from high-frequency returns are the same as longer-
interval correlations. However, these two relationships 
hold only if asset returns are independently distributed 
across time, which means that autocorrelations and 
lagged cross correlations are zero. Evidence reveals that 
lagged correlations are significantly nonzero.10

Equation 4 shows how high-frequency standard 
deviations are related to low-frequency standard devia-
tions. The left-hand side of Equation 4 is the standard 
deviation of the cumulative continuous returns of x over 
q periods, where xσ  is the standard deviation of x mea-
sured over single-period intervals.
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Equation 5 shows how high-frequency correlations 
are related to low-frequency correlations. The left-hand 
side of Equation 5 is the correlation between the cumu-
lative returns of x and the cumulative returns of y over 
q periods. The numerator ref lects the covariance of the 
assets taking lagged correlations into account, whereas 
the denominator ref lects the product of the assets’ 
standard deviations as described by Equation 4. This 
equation allows us to assume values for the autocorrela-
tions of x and y, as well as the lagged cross correlations 
between x and y, in order to compute the correlations 
and standard deviations that these parameters imply for 
longer horizons.
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Equations 4 and 5 reveal that longer-interval 
covariances will differ from shorter-interval covari-
ances to the extent lagged correlations differ from zero. 
If all the lagged correlations are zero, the standard devia-
tion will scale with the square root of the number of 
periods, q, and the correlation will be invariant to the 
measurement interval.
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We capture the error due to nonzero lagged 
correlations, which we term interval error, as follows. For 
each realization sample, we first estimate covariances 
using one-month returns, which we denote using the 
subscript m, j, as before. Next, we estimate the annual 
covariances implied by lagged correlations over the same 
sample, which we denote using the subscript ann, j. We 
perform these calculations within the same subsamples 
in order to isolate this effect from errors that arise from 
having different estimation and realization samples. For 
each subsample, we compute the difference between 
the statistics estimated from monthly returns and those 
estimated from annual returns divided by 12,11 and we 
divide by the product of both assets’ full-sample standard 
deviations to normalize this quantity. We then compute 
the root-mean-squared error across all subsamples.
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 (6)

Total Covariance Error

The error metrics defined above can be applied to 
the covariances of any collection of assets (or factors). 
For a given asset universe of n assets, we compute the 
n-by-n matrix of covariance errors for all asset pairs. 
We calculate a total covariance error by averaging the 
squared errors contained in this entire matrix. We 
weight each element in the matrix equally because they 
are comparable quantities and each is important to risk 
measurement and portfolio construction.12 Total error 
can be calculated for any component of error. 

 TE
n

E i j
i

n

j

n1
( ,E i( ,E i )2

1 1j1 1j

2∑∑=
= =1 1= =1 1j1 1j= =j1 1j

 (7)

Computing the average of the errors across the 
elements of the covariance matrix implicitly recognizes 
the relative importance of variances and correlations:

1. Any one variance is probably more important 
than any one correlation. In our computation of 
total covariance error, errors in variances receive 
greater weight than errors in correlations, because 

the error of each covariance in the matrix ref lects 
the error in the correlation of that asset pair as well 
as the error in each asset’s variance. Errors in vari-
ance are also present in the diagonal terms in the 
matrix, and there is no correlation error present in 
those terms because they pertain to a single asset. 

2. However, there are more correlations than vari-
ances. Even though an error in one correlation 
may be less important than an error in one vari-
ance, averaging across the entire matrix accounts 
for the fact that there are many more correlations 
than there are variances. 

Composite Instability Score

The four sources of error introduced above are 
independent from one another,13 which means we can 
sum the squares of each error and then take the square 
root of this sum to compute a composite instability 
score.14

 

Composite Instability Score(CIS)

2 2 2 2SSE IS2 2IS2 2E M2 2E M2 2 E I2 2E I2 2E ME IE M E2 2E2 2E IEE I2 2E I2 2E2 2E I2 2= +2 2= +2 2= += +SSE= +SSE E M+ +E ME I+ +E I2 2E I2 2+ +2 2E I2 2E ME IE M+ +E ME IE M  (8)

Errors in Means

The methodologies we have introduced for quan-
tifying parameter instability pertain only to covari-
ances. Investors also care about mean returns. We do 
not address errors in means for several reasons: 

1. The small-sample error of mean returns is pro-
portional to its full-sample variance. As we noted 
earlier, it is impossible for factors to produce port-
folios with lower variance than assets for a given 
level of expected return. 

2. Independent-sample error for mean returns differs 
across assets, but it is of limited interest because 
investors do not usually extrapolate past returns 
to estimate expected future returns. 

3. Mean returns are not subject to interval error.15

ASSETS, FACTORS, AND DATA

Until now we have used the term asset to refer to 
macro asset classes such as stocks and bonds and industry 
groupings, and we have used the term factor to refer 
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to any grouping that is not an asset class or industry. 
Going forward, we distinguish between two categoriza-
tions of assets: asset classes and industry groupings. And 
we distinguish between three types of factors: funda-
mental factors, security attributes, and statistical factors 
derived from principal components analysis.

Our first set of experiments compares the stability 
of broad asset classes to the stability of fundamental 
factors and principal components. The specific asset class 
indexes and fundamental factor time series are shown 
in Exhibit 3. This data set spans January 1990 through 
December 2015.16 We create factor-mimicking portfo-
lios for the fundamental factors by regressing the asset 
class returns on the factor values and rescaling the betas 
such that the sum of absolute weights equals one. We use 
principal components analysis to form six portfolios rep-
resenting statistical factors. Each portfolio corresponds 
to an eigenvector. It is important to note that all of these 
groupings represent different stratifications of the same 
underlying investable units. 

We also compare the stationarity of various industry 
classif ications to security attribute classif ications and 
principal components derived from the 288 individual 
equity securities that were present in the MSCI USA 
Index from January 1989 through December 2015 and 
for which full data history is available for price, market 
capitalization, and book-to-market valuation. Exhibit 4 
shows how we stratify the U.S. equity market. 

We stratify this universe into three industry group-
ings of 56, 24, and 10 dimensions corresponding to 
GICS classifications.17 We then stratify the same universe 
into 56, 24, and 10 quantiles of market capitalization, 
book-to-market value ratios, and trailing one-year 
returns to form size, value, and momentum portfolios. 
Within each group, we weight securities by their market 
capitalization, and we use average values of attributes 
within each window for sorting. Finally, we identify the 
most important sets of 36, 24, and 10 statistical factors 
using principal components analysis applied to the indi-
vidual stocks.18

For fundamental factors, attributes, and principal 
components, the object we want to study is a portfolio 
of assets whose composition will change depending on 
the data sample used to estimate it. When we measure 
small-sample error, we compute principal components 
or factor-mimicking weights using the 36-month sub-
sample, and we evaluate the statistics of that same port-
folio over the full sample and the 36-month subsample 
from which the weights were derived. For independent-
sample error, we compute principal components or 
factor-mimicking weights using the 36-month realiza-
tion subsample, and we evaluate the portfolio over both 
36-month subsamples in the formula. We estimate the 
standard deviations in the denominator of the formula 
by applying the weights from the subsample to the full-
sample asset returns. For interval error, we estimate 
principal components or factor-mimicking weights 

e X H i B i t  3
Asset Class and Factor Data
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using the relevant 36-month period, and we estimate 
the standard deviations in the denominator by applying 
those weights to the full-sample asset returns. 

RESULTS

We first compare asset classes to fundamental 
factors and principal components. Exhibit 5 compares 
small-sample error, independent-sample error, mapping 
error, and interval error for these three approaches to 
stratification, as well the composite instability score. 

We next turn to a comparison of industries, 
which we construe as assets,19 portfolios based on secu-
rity attributes, and principal components formed from 
the underlying securities. Exhibit 6 shows the sources 
of error and the composite instability score for each 
approach to stratif ication in the case of 10 groups. 

To evaluate the signif icance of these differences in 
errors, we constructed 1,000 random groupings of stocks 
to form a distribution of errors due to random chance. 
The composite instability score of 0.57 for industries is 
less than the lowest score for any of the 1,000 random 
groupings, which is 0.62. This result suggests that there 
is some useful information in industries that contrib-
utes stability to the groups. In contrast, the composite 
instability scores for attributes (0.67) and principal com-
ponents (0.87) are both larger than the maximum insta-
bility observed in any of the 1,000 random groupings, 
which is 0.64. 

Exhibit 7 shows the composite instability score and 
each source of error for various levels of dimensionality. 
Consistent with the intuition discussed earlier, we find 
that grouping stocks by industry classification has very 
little impact on the instability of covariances. Reducing 

e X H i B i t  4
Industries, Attributes, and Equity Securities Data

e X H i B i t  5
Sources of Errors and the Composite Instability Score: Asset Classes, Fundamental Factors, 
and Principal Components
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dimensionality through attribute-based groupings or 
principal components actually increases instability, 
largely because of the mapping error of factors.20 

CONCLUSION

Investors are increasingly using factors rather than 
assets to search for higher returns, to control risk, to gain 
insights about performance, and to construct portfolios. 

We acknowledge that factors may offer risk premiums or 
even alphas as well as valuable insights about risk expo-
sures and performance. But we do not agree that inves-
tors should use factors instead of assets as the building 
blocks for forming portfolios. We have shown that given 
the same constraints, it is impossible to generate a supe-
rior in-sample portfolio by regrouping assets into factors 
if the investable units are assets from which the factors 
are formed. 

e X H i B i t  6
Sources of Errors and the Composite Instability Score: Industries, Attributes, and Principal Components

e X H i B i t  7
Noise Reduction for Industries, Attributes, and Principal Components
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We also argued from first principles that reducing 
the dimensionality of a larger set of assets to a smaller set 
of factors is no more effective in decreasing noise than 
is reducing the dimensionality to a smaller set of assets. 

We then considered the possibility that inves-
tors are more skilled at relating current information 
to future factor behavior than to future asset behavior. 
However, we conceded that we could not test this con-
jecture generically because skill is investor specific. We 
did note, though, that investors who favor predicting 
factors face the additional challenge of mapping these 
factor predictions onto asset predictions, and they must 
also incur incremental trading costs to the extent that 
factor-mimicking portfolios change over time. 

Finally, we identified the types of errors that con-
tribute to covariance instability, and we quantified these 
errors for various sets of assets and factors. We found that 
factors are less stable than assets mainly because, unlike 
assets, they are subject to mapping error.21 In our view, 
the case is yet to be made that investors should use fac-
tors rather than assets as building blocks for forming 
portfolios.

ENDNOTES

We thank Ken Froot, Robin Greenwood, Roy 
Henrikkson, Will Kinlaw, Paul Mende, Anya Obizhaeva, 
and participants at the London Quantitative Group Summer 
2015 seminar and the JOIM/MIT Center for Finance and 
Policy Fall 2015 seminar for helpful comments.

The material presented is for informational purposes 
only. The views expressed in this material are the views of 
the authors and are subject to change based on market and 
other conditions and factors; moreover, they do not neces-
sarily represent the official views of MIT, Windham Capital 
Management, State Street Global Exchange, or State Street 
Corporation and its affiliates.

1Of course, if factors are replicated dynamically they 
would expand the opportunity set. However, one could rebal-
ance assets dynamically for purposes other than to replicate 
factors, such as to produce option-like payoffs, which would 
also expand the opportunity set. It is the dynamic rebalancing 
that changes the opportunity set, not the replication of factors.

2Another justification for using principal components 
for this illustration is that principal component factors will 
pick up on the information contained in explicit factors that 
have the ability to explain returns, as shown by Brown [1989].

3For a mathematical proof of this equality, please refer 
to Idzorek and Kowara [2013].

4As a simple and intuitive example, consider small-
sample error for a universe of assets that is normally distributed. 
It can be shown that the expected normalized small-
sample error of asset standard deviations (from Equation 1) 
will converge to k1/ 2  for large samples. Portfolios of nor-
mally distributed assets are themselves normally distributed, 
which means that every portfolio will have the same expected 
instability per unit of volatility. The normalized errors in 
covariances between two assets will be distributed similarly to 
errors in correlation statistics, because much of the volatility 
contained in the numerator of Equation 1 will be cancelled 
out by volatility contained in the denominator. For normally 
distributed assets, it can be shown that expected small-sample 
error in correlation will converge to k1 /21 /21 /− ρ1 /− ρ1 /  for large 
samples. Interestingly, this implies that assets with zero cor-
relations will experience the greatest amount of small-sample 
error, while those with high correlation will experience the 
lowest amount of small-sample error.

5Investors typically estimate expected returns based on 
considerations other than purely historical precedent.

6It is important to clarify that each of these represents 
a distinct source of error.

7We refer to the components of these formulas as assets, 
because even when we apply them to factors, the factors are 
represented by combinations of assets.

8Our choice of a 36-month performance horizon aligns 
with the common practice among many investors of reevalu-
ating their strategic asset allocation every three years. We find 
that this assumption has little impact on results. We found 
that our results and conclusions remain intact for 60-month 
estimation and realization intervals. The only material dif-
ference is that, as expected, the degree of small-sample error 
decreases as the window size grows longer. Mapping error 
remained almost identical across assets classes, fundamental 
factors, and principal components.

9Mapping error may apply to assets if, for example, the 
constituents of a stock index change, or an individual security 
is reclassified within an index. These changes tend to happen 
rarely and only affect a small portion of the value of any given 
index, so mapping error for assets is usually close to zero.

10For more information, please refer to Kinlaw, 
Kritzman, and Turkington [2014] and Kinlaw, Kritzman, 
and Turkington [2015].

11Using Equations 4 and 5, we imply annual volatilities 
and correlations using monthly returns and 11 lagged auto- 
and cross correlations (where relevant).

12It is conceivable that the errors in covariances are cor-
related across multiple asset pairs. In particular, assets that 
themselves are correlated may have correlated sources of esti-
mation error. For the data set used in our empirical study, 
the correlations among errors were consistently close to zero 
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across the covariance matrixes we analyzed, with only a small 
number of exceptions. For this reason, as well as the fact that 
an investor’s perception of correlated errors could be either 
good or bad depending on the portfolio allocation, we use a 
simple equal weighting of errors across the covariance matrix.

13The sources of error we compute are conceptually 
distinct and will be uncorrelated when computed for a suf-
ficiently long time series of simulated normally distributed 
data. For the data set used in our empirical study, the cor-
relations among different sources of error were consistently 
close to zero.

14It is tempting to try to measure total estimation error 
directly by comparing one set of estimates that includes all 
errors to another set of true realizations. Unfortunately, this 
is not possible because doing so obscures the mapping error of 
factors that must be captured. As an example, consider prin-
cipal components analysis. Suppose our investment objective 
is to allocate across the principal component factors that will 
prevail in the subsequent three-year realization sample. We do 
not know the future covariances, nor do we know the weights 
that will best track the desired factor exposures over that 
future period. If we estimate covariances and weights based 
on historical data, both will have error in tracking the desired 
exposures, but the off-diagonal covariances will be zero by 
definition (because they are orthogonal principal compo-
nents) for both the fitted estimation sample and the re-fitted 
realization sample, and these correlations would then appear 
to have zero error. That conclusion is not correct because it 
ignores the fact that the estimation weights represent different 
factors than the desired future factor weights.

15The cumulative compounded return over any period 
will always equal the geometric average returns of the sub-
periods multiplied by the number of subperiods.

16We use log returns throughout our analysis to con-
trol for the effect of compounding on interval error. At the 
monthly frequency, log returns are nearly identical to holding 
period returns and the distinction would not affect our 
analysis.

17The Global Industry Classification Standard (GICS) 
was developed by and is the exclusive property of MSCI Inc. 
and Standard & Poor’s. GICS is a service mark of MSCI and 
S&P and has been licensed for use by State Street.

18Because we run the principal components analysis on 
data subsamples of 36-months, the rank of the covariance 
matrix is only 36, so we include as many eigenvectors as 
possible in the case of 56 groupings.

19Philosophically, it is difficult to label industries as a 
form of asset stratification and security attributes as a form 
of factor stratif ication. We do so only because historically 
investors have typically allocated across industries rather than 
across security attributes.

20We also tested reducing dimensionality in the asset 
class universe. In this case, we consolidated assets into three 
major groups: equities, f ixed income, and alternatives. 
We mapped the original six asset classes to three funda-
mental factors representing composite macro, fixed income, 
and equity factors, and we also mapped the six asset classes 
to the top three principal components. As with individual 
stocks, we found that dimensionality reduction in the asset 
class universe did not alter our conclusions. The composite 
instability of the three fundamental factors and three principal 
components was larger than that of the three asset classes, 
largely because of mapping error of the factors.

21Our analysis pertains to factors that are fixed-weight 
linear combinations of the underlying assets. It could be the 
case that dynamically replicated factors might be more stable, 
especially if they are rebalanced very frequently. But frequent 
rebalancing would drive up trading costs and likely offset the 
benefit of stabilizing factor covariances.
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